Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Construction Methods Emulated

05.03.2008
Versatile compartmentalized nanostructures by orthogonal aggregation of surfactants and gelators

Not only is our body made of individual organs, our cells themselves are made of tiny organelles, a variety of separate compartments that fulfill different tasks. Such functional, nanostructured systems would also be useful for technical applications, such as biosensors, self-repairing materials, optoelectronic components, or nanocapsules.

However, it has not been possible to recreate structures with sufficient complexity in the lab. Researchers in the Netherlands, led by Jan van Esch at the Universities of Delft and Groningen as well as the BioMaDe Technology Foundation, are now pursuing a new angle. As they report in the journal Angewandte Chemie, they allow surfactants and gelators to form aggregates. These aggregates coexist without interfering with each other and thus make versatile, highly complex structures with separate compartments.

Cells contain various components, such as channels, “motors”, structural frameworks (cytoskeleton), and “power plants” (mitochondria). In order for these to form, their building blocks, mainly proteins and lipids, must “recognize” each other and form the correct assembly by self-aggregation. In addition, it is critical that compatible components do not separate into different phases: when proteins fold, the water-loving (hydrophilic) and water-repellent (hydrophobic) parts of the molecule stay far away from each other and aggregate with “like-minded” components. Biomembranes are formed when many small lipid molecules aggregate such that their hydrophobic “tails” face inward together and their hydrophilic “heads” point outward toward the aqueous medium.

The Dutch team imitated this concept by using two types of self-aggregating compounds: surfactants and gelators. Like the lipids in natural membranes, surfactants have a hydrophilic segment and a hydrophobic segment and aggregate into structures such as membrane-like double layers or vesicles (bubbles). To imitate the forces involved in protein folding—hydrogen-bridge bonds and hydrophobic interactions—the team used a disk-shaped gelator, in which hydrophobic and hydrophilic molecular components alternate in concentric rings. Just as for proteins, like attracts like. This causes the disks to stack together into columns, which forms long fibers, generating a three-dimensional network in the solution to make a gel.

The researchers allow their surfactants and gelators to aggregate together. In this process, the different components take no notice of each other. This independent formation of different supramolecular structures within a single system is called orthogonal self-aggregation. This results in the formation of novel, complex, compartmentalized architectures, for example, interpenetrating but independent networks or vesicle configurations that coexist with gel fibers.

Author: Jan van Esch, University of Delft (The Netherlands), http://www.tudelft.nl/live/pagina.jsp?id=32e323ab-be78-43e4-96db-e6452fc418e5&lang=en

Title: Preparation of Nanostructures by Orthogonal Self-Assembly of Hydrogelators and Surfactants

Angewandte Chemie International Edition 2008, 47, No. 11, 2063–2066, doi: 10.1002/anie.200704609

Jan van Esch | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.tudelft.nl/live/pagina.jsp?id=32e323ab-be78-43e4-96db-e6452fc418e5&lang=en

Further reports about: Components Gelator Lipid hydrophilic hydrophobic surfactants

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>