Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Moths or Butterflies Remember What They Learned as Caterpillars?

05.03.2008
Georgetown University Researchers Publish First Conclusive Demonstration that Associative Memory Survives Metamorphosis

Butterflies and moths are well known for their striking metamorphosis from crawling caterpillars to winged adults. In light of this radical change, not just in body form, but also in lifestyle, diet and dependence on particular sensory cues, it would seem unlikely that learned associations or memories formed at the larval or caterpillar stage could be accessible to the adult moth or butterfly. However, scientists at Georgetown University recently discovered that a moth can indeed remember what it learned as a caterpillar. Their findings are published in the March 5, 2008 edition of the journal PLoS ONE.

The Georgetown researchers found that tobacco hornworm caterpillars could be trained to avoid particular odors delivered in association with a mild shock. When adult moths emerged from the pupae of trained caterpillars, they also avoided the odors, showing that they retained their larval memory. The Georgetown University study is the first to demonstrate conclusively that associative memory can survive metamorphosis in Lepidoptera—the order of insects that includes moths and butterflies—and provokes new questions about the organization and persistence of the central nervous system during metamorphosis.

“The intriguing idea that a caterpillar’s experiences can persist in the adult butterfly or moth captures the imagination, as it challenges a broadly-held view of metamorphosis -- that the larva essentially turns to soup and its components are entirely rebuilt as a butterfly,” says senior author Martha Weiss, an associate professor of Biology at Georgetown University.

... more about:
»Caterpillar »Georgetown »insect »metamorphosis »moth »odor

“Scientists have been interested in whether memory can survive metamorphosis for over a hundred years,” says first author Doug Blackiston, who completed the interdisciplinary research while earning a PhD in Biology from Georgetown University in the labs of developmental biologist Elena Casey and behavioral ecologist Martha Weiss. The brain and nervous system of caterpillars is dramatically reorganized during the pupal stage and it has not been clear whether memory could survive such drastic changes.

The findings of the Georgetown researchers suggest the retention of memory is dependent on the maturity of the developing caterpillars’ brains. Caterpillars younger than three weeks of age learned to avoid an odor, but could not recall the information as adults, whereas older caterpillars, conditioned in the final larval stage before pupation, learned to avoid the odor and recalled the information as adults. In addition, the results have both ecological and evolutionary implications, as retention of memory through metamorphosis could allow a female butterfly or other insect to lay her eggs on the type of host plant that she herself had fed on as a larva, a behavior that could shape habitat selection and eventually lead to development of a new species.

While most research on learning and memory in insects has centered on social insects, such as honeybees or ants, Weiss’ lab is particularly interested in solitary insects, such as butterflies, praying mantids, and mud-dauber wasps. Weiss and her colleagues will continue to study how these self-sufficient, multitasking insects use learning and memory skills to adapt to their environments.

This study was farther afield from the neural cell specification research that is ongoing in Casey’s lab. Casey, associate professor of Biology at Georgetown, focuses on identifying the signals that are required to direct a cell to develop into a neuron and determining how the complex human central nervous system evolved.

Blackiston, now conducting postdoctoral work at the Forsyth Center for Regenerative and Developmental Biology and the Department of Developmental Biology at the Harvard School of Dental Medicine, is currently examining learning and memory in aquatic vertebrates.

About Georgetown University
Georgetown University is the oldest Catholic and Jesuit University in America, founded in 1789 by Archbishop John Carroll. Georgetown today is a major student-centered, international, research university offering respected undergraduate, graduate and professional programs on its three campuses in Washington, DC. For more information about Georgetown University, visit www.georgetown.edu.
Contact:
Rachel Pugh
Tel: +1 202-487-4328
Email: rmp47@georgeotown.edu
Citation: Blackiston DJ, Silva Casey E, Weiss MR (2008) Retention of Memory through Metamorphosis: Can a Moth Remember What It Learned As a Caterpillar? PLoS ONE 3(3): e1736. doi:10.1371/journal.pone.0001736

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001736

Further reports about: Caterpillar Georgetown insect metamorphosis moth odor

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>