Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cocktail party filter: how the brain enhances auditory signal contrasts

05.03.2008
How does the brain manage to concentrate on a certain voice at the background of multiple different voices? - This typical cocktail party scenario has been studied by neuroscientists in Magdeburg, Ulm, Erlangen and Newcastle.

Holger Schulze and his team found a surprising answer: the auditory system can discriminate voices according to their time structure. Only signals from the chosen voice will be processed, while processing of all the other voices is inhibited: the winner takes it all.

Everybody who attends a cocktail party from time to time might have realized the amazing ability of our auditory system to be able to listen to and understand somebody speaking while many other people are talking loudly at the same time. This so-called "cocktail party phenomenon" is based on the ability of the human auditory system to decompose the acoustic world into discrete objects of perception. It was originally believed that the major acoustic cue the auditory system uses to solve this task is directional information of the sound source, but even though localisation of different sound sources with two ears improves the performance, it can be achieved monaurally, for example in telephone conversations, where no directional information is available.

Scientists from the Leibniz-Institute for Neurobiology in Magdeburg, and the Universities of Ulm, Newcastle and Erlangen, have now found a neuronal mechanism in the auditory system that is able to solve the task based on the analysis of the temporal fine structure of the acoustic scene. The idea is that different speakers have different temporal fine structures in their voiced speech and that such signals are represented in different areas of the auditory cortex according to this different time structure. By means of a so-called "winner-take-all" algorithm one of these representations then gains control over all other representations.

... more about:
»Brain »Cocktail »Party »auditory »structure
The result of this mechanism is that only the voice of the speaker you want to listen to is still represented in auditory cortex and can therefore be followed over time. This predominance of the representation of one speaker's voice over the representations of all other speakers is achieved by long-range inhibitory interactions that are first described by the paper of Kurt et al. by means of functional neurophysiological, pharmacological and anatomical methods.

Their findings led us to a deeper understanding of how the parcellation of sensory input from perceptually distinct objects is realised in the brain, and may, for example, help to improve hearing aids for which cocktail party-like situations are still a major problem.

Press release to accompany the article "Auditory Cortical Contrast Enhancing by Global Winner-Take-All Inhibitory Interactions" by Simone Kurt, Anke Deutscher, John M. Crook, Frank W. Ohl, Eike Budinger, Christoph K. Moeller, Henning Scheich, and Holger Schulze to appear in PLoS ONE on Wednesday, March 5.

Further Information:
Prof. Dr. Holger Schulze
University of Erlangen-Nuremberg
Experimental Otolaryngology
Waldstrasse 1
91054 Erlangen
Tel.: +49-9131-8533623
Fax.: +49-9131-8534778
Mobil: +49-176-24199603
email: Holger.Schulze@uk-erlangen.de
Web: http://www.schulze-holger.de/

Dr. Constanze Seidenbecher | idw
Further information:
http://www.ifn-magdeburg.de/

Further reports about: Brain Cocktail Party auditory structure

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>