Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cocktail party filter: how the brain enhances auditory signal contrasts

05.03.2008
How does the brain manage to concentrate on a certain voice at the background of multiple different voices? - This typical cocktail party scenario has been studied by neuroscientists in Magdeburg, Ulm, Erlangen and Newcastle.

Holger Schulze and his team found a surprising answer: the auditory system can discriminate voices according to their time structure. Only signals from the chosen voice will be processed, while processing of all the other voices is inhibited: the winner takes it all.

Everybody who attends a cocktail party from time to time might have realized the amazing ability of our auditory system to be able to listen to and understand somebody speaking while many other people are talking loudly at the same time. This so-called "cocktail party phenomenon" is based on the ability of the human auditory system to decompose the acoustic world into discrete objects of perception. It was originally believed that the major acoustic cue the auditory system uses to solve this task is directional information of the sound source, but even though localisation of different sound sources with two ears improves the performance, it can be achieved monaurally, for example in telephone conversations, where no directional information is available.

Scientists from the Leibniz-Institute for Neurobiology in Magdeburg, and the Universities of Ulm, Newcastle and Erlangen, have now found a neuronal mechanism in the auditory system that is able to solve the task based on the analysis of the temporal fine structure of the acoustic scene. The idea is that different speakers have different temporal fine structures in their voiced speech and that such signals are represented in different areas of the auditory cortex according to this different time structure. By means of a so-called "winner-take-all" algorithm one of these representations then gains control over all other representations.

... more about:
»Brain »Cocktail »Party »auditory »structure
The result of this mechanism is that only the voice of the speaker you want to listen to is still represented in auditory cortex and can therefore be followed over time. This predominance of the representation of one speaker's voice over the representations of all other speakers is achieved by long-range inhibitory interactions that are first described by the paper of Kurt et al. by means of functional neurophysiological, pharmacological and anatomical methods.

Their findings led us to a deeper understanding of how the parcellation of sensory input from perceptually distinct objects is realised in the brain, and may, for example, help to improve hearing aids for which cocktail party-like situations are still a major problem.

Press release to accompany the article "Auditory Cortical Contrast Enhancing by Global Winner-Take-All Inhibitory Interactions" by Simone Kurt, Anke Deutscher, John M. Crook, Frank W. Ohl, Eike Budinger, Christoph K. Moeller, Henning Scheich, and Holger Schulze to appear in PLoS ONE on Wednesday, March 5.

Further Information:
Prof. Dr. Holger Schulze
University of Erlangen-Nuremberg
Experimental Otolaryngology
Waldstrasse 1
91054 Erlangen
Tel.: +49-9131-8533623
Fax.: +49-9131-8534778
Mobil: +49-176-24199603
email: Holger.Schulze@uk-erlangen.de
Web: http://www.schulze-holger.de/

Dr. Constanze Seidenbecher | idw
Further information:
http://www.ifn-magdeburg.de/

Further reports about: Brain Cocktail Party auditory structure

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>