Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers discover novel way to develop tumor vaccines

04.03.2008
Researchers find way to regulate immune inhibitor to overcome tumor supression

Researchers at the University of Southern California (USC) have uncovered a new way to develop more effective tumor vaccines by turning off the suppression function of regulatory T cells. The results of the study, titled “A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression,” will be published in Nature Medicine on March 2, 2008.

“Under normal circumstances, regulatory T cells inhibit the immune system to attack its own cells and tissues to prevent autoimmune diseases. Cancer cells take advantage of regulatory T cells' suppressor ability, recruiting them to keep the immune system at bay or disabling the immune system’s attack provoked by tumor vaccines.” says Si-Yi Chen, M.D., Ph.D., professor of immunology and molecular microbiology at the USC/Norris Comprehensive Cancer Center and the Keck School of Medicine of USC. “Our study provides a new vaccination strategy to overcome the regulatory T cells’ immune suppression while avoiding non-specific overactivation of autoreactive T cells and pathological autoimmune toxicities.”

The study identified a new molecular player called A20, an enzyme that restricts inflammatory signal transduction in dendritic cells. When it is inhibited, the dendritic cells overproduce an array of cytokines and co-stimulatory molecules that triggers unusually strong immune responses that cannot be suppressed by regulatory T cells. The resulting hyperactivated immune responses triggered by A20-deficient dendritic cells are capable of destroying various types of tumors that are resistant to current tumor vaccines in mice.

“Through a series of immunological studies, we have identified A20 as an essential antigen presentation attenuator that prevents the overactivation and excessive inflammation of the dendritic cells, which, in turn, restricts the potency of tumor vaccines,” says Chen.

The immune system’s dendritic cells are the guardian cells of the immune systems and play an important role in activating immune responses to recognize and destroy tumor cells. Tumor vaccines have been designed and developed to incite the immune response to cancer cells so that the immune system can attack and destroy cancer cells. However, discovering A20’s role in restricting immune responses has led to a method for blocking tumors from using regulatory T cells for protection.

“Despite intensive efforts, tumor vaccines have been largely ineffective in causing tumor regression in the clinic,” says Chen. “The vaccination approach we developed inhibits the key inhibitor in tumor antigen-loaded dendritic cells to selectively hyperactivate immune responses and to tip the balance from immune suppression in tumor-bearing hosts or cancer patients to effective antitumor immunity.”

This approach is capable of overcoming the regulatory T cells’ suppression mechanism and will allow for a new generation of tumor vaccines to be developed. The next step is to translate these findings into a human clinical trial, says Chen.

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: T cells USC dendritic dendritic cells regulatory suppression vaccines

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>