Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers discover novel way to develop tumor vaccines

04.03.2008
Researchers find way to regulate immune inhibitor to overcome tumor supression

Researchers at the University of Southern California (USC) have uncovered a new way to develop more effective tumor vaccines by turning off the suppression function of regulatory T cells. The results of the study, titled “A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression,” will be published in Nature Medicine on March 2, 2008.

“Under normal circumstances, regulatory T cells inhibit the immune system to attack its own cells and tissues to prevent autoimmune diseases. Cancer cells take advantage of regulatory T cells' suppressor ability, recruiting them to keep the immune system at bay or disabling the immune system’s attack provoked by tumor vaccines.” says Si-Yi Chen, M.D., Ph.D., professor of immunology and molecular microbiology at the USC/Norris Comprehensive Cancer Center and the Keck School of Medicine of USC. “Our study provides a new vaccination strategy to overcome the regulatory T cells’ immune suppression while avoiding non-specific overactivation of autoreactive T cells and pathological autoimmune toxicities.”

The study identified a new molecular player called A20, an enzyme that restricts inflammatory signal transduction in dendritic cells. When it is inhibited, the dendritic cells overproduce an array of cytokines and co-stimulatory molecules that triggers unusually strong immune responses that cannot be suppressed by regulatory T cells. The resulting hyperactivated immune responses triggered by A20-deficient dendritic cells are capable of destroying various types of tumors that are resistant to current tumor vaccines in mice.

“Through a series of immunological studies, we have identified A20 as an essential antigen presentation attenuator that prevents the overactivation and excessive inflammation of the dendritic cells, which, in turn, restricts the potency of tumor vaccines,” says Chen.

The immune system’s dendritic cells are the guardian cells of the immune systems and play an important role in activating immune responses to recognize and destroy tumor cells. Tumor vaccines have been designed and developed to incite the immune response to cancer cells so that the immune system can attack and destroy cancer cells. However, discovering A20’s role in restricting immune responses has led to a method for blocking tumors from using regulatory T cells for protection.

“Despite intensive efforts, tumor vaccines have been largely ineffective in causing tumor regression in the clinic,” says Chen. “The vaccination approach we developed inhibits the key inhibitor in tumor antigen-loaded dendritic cells to selectively hyperactivate immune responses and to tip the balance from immune suppression in tumor-bearing hosts or cancer patients to effective antitumor immunity.”

This approach is capable of overcoming the regulatory T cells’ suppression mechanism and will allow for a new generation of tumor vaccines to be developed. The next step is to translate these findings into a human clinical trial, says Chen.

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: T cells USC dendritic dendritic cells regulatory suppression vaccines

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>