Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading Edge Vortex Allows Bats to Stay Aloft

04.03.2008
Aerodynamicist Geoff Spedding has observed for the first time how bats lift and hover, just like insects
Honey bees and hummingbirds can hover like helicopters for minutes at a time, sucking the juice from their favorite blossoms while staying aloft in a swirl of vortices.

But the unsteady air flows they create for mid-air suspension – which hold the secrets to tiny robotic flying machines -- have also been observed for the first time in the flight of larger and heavier animals, according to Prof. Geoffrey Spedding of the Department of Aerospace and Mechanical Engineering at the University of Southern California and his colleagues at Lund University, Sweden.
In a follow-up study of bat aerodynamics, appearing in the February 29, 2008 issue of Science, Spedding and co-authors F. T. Muijres, L.C. Johansson, R. Barfield, M. Wolf and A. Hedenstrom were able to measure the velocity field immediately above the flapping wings of a small, nectar-eating bat as it fed freely from a feeder in a low-turbulence wind tunnel.

“Thanks to a very reliable behavior pattern where bats learned to feed at a thin, sugar-filled tube in the wind tunnel, using the same flight path to get there every time, and the construction of side flaps on the feeder tube, we could make observations with bright laser flashes right at mid-wing without harming the bats,” Spedding reported in a commentary about the study. “Before this, we had no direct evidence of how the air moved over the wing itself in these small vertebrates.”

The researchers’ findings challenge quasi-steady state aerodynamic theory, which suggests that slow-flying vertebrates should not be able to generate enough lift to stay above ground, said Spedding, a professor of aerospace and mechanical engineering in the USC Viterbi School of Engineering.

Using digital particle image velocimetry, the researchers discovered that Pallas’ long-tongued bat, Glossophaga soricina, increased its lift by as much as 40 percent using a giant and apparently stable, re-circulating zone, known as a leading-edge vortex (LEV), which completely changed the effective airfoil shape.

“The air flow passing over the LEV of a flapping wing left an amazingly smooth and ordered laminar disturbance at the trailing edge of the wing, and the LEV itself accounted for at least a 40 percent increment in lift,” Spedding noted in his commentary, “Leading Edge Vortex Improves Lift in Slow-Flying Bats.” The LEV makes a strong lift force, but it may be equally important that the smooth flow behind it may be associated with low, or at least not increased, drag.

“The sharp leading edge of the bat wing generates the LEV,” Spedding said, “while the bat’s ability to actively change its wing shape and wing curvatures may contribute to control and stability in the leading-edge vortex.”

Spedding and his colleagues believe observations of LEVs in active, unrestricted bat flight have important implications for overall aerodynamic theory and for the design of miniature robotic flight vehicles, which have been undergoing dramatic modifications in recent years.

“There’s much to be learned from bat flight about unsteady flows and forces on small bodies,” Spedding said. “We have suspected for a while that insects weren’t the only creatures affected by highly unsteady viscous air flows, but now we know that larger animals adapted for slow and hovering flight, such as these nectar-feeding bats, can – and perhaps must – use LEVs to enhance flight performance. So, if we wish to build a highly maneuverable, slow-flying surveillance plane, maybe it should flap its wings like a bat?”

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Flow LEV Lift Spedding WING

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>