Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model tightly matches pediatric tumor syndrome, will speed drug hunt

04.03.2008
Frustrated by the slow pace of new drug development for a condition that causes pediatric brain tumors, a neurologist at Washington University School of Medicine in St. Louis decided to try to fine-tune the animal models used to test new drugs.

Instead of studying one mouse model of the disease causing the brain tumors, the laboratory of David Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology, evaluated three. They "auditioned" the three models to see which was the best match for neurofibromatosis 1, a genetic condition that increases the risk of brain tumors and afflicts more than 100,000 people in the United States.

Animal models have long been used to explore the basic physiology underlying disease and to tentatively try out new remedies, but Gutmann believes that creating a tighter match between the animal models and the human disorder will allow more extensive and more accurate preclinical testing of potential therapies.

"If you think of how we move drugs from testing in the laboratory to testing in humans, this is an exciting step that's likely to speed the translation from bench to bedside," says Gutmann, the senior author of a report in the March 1 Cancer Research. "With more extensive preclinical testing in the mice, we can make sure a new drug is reaching its target protein in tumor cells, we can learn whether the drug is killing tumor cells or shutting off their growth, and we can get some indication of whether the drug is likely to have an adverse effect on the developing brain."

Gutmann is director of the Washington University Neurofibromatosis Center, which facilitates multidisciplinary neurofibromatosis research and is dedicated to developing better treatments to improve the lives of patients affected by the disorder. Fifteen to 20 percent of children with neurofibromatosis 1 develop brain tumors called gliomas that arise from brain cells known as glial cells. Gutmann's lab has studied a mouse model of neurofibromatosis 1 for several years to gain a better understanding of how defects in the NF1 gene cause gliomas.

For the new study, Gutmann and colleagues Joshua Rubin, M.D., Ph.D., assistant professor of pediatrics, neurology and of neurobiology, and Joel Garbow, Ph.D., research associate professor of radiology, compared three mouse brain tumor models of neurofibromatosis 1. One of the models was the line his lab has previously used to study basic tumor biology.

To compare the mouse lines to the human disorder, researchers analyzed where the mice developed tumors, determined how quickly the tumor cells were dividing, and assessed when the tumors ceased growing. Based on these criteria, they learned that the model they had used earlier most faithfully reproduced the important features of the human condition. Researchers hope that this means the model will also give them the most accurate picture of how human patients are likely to respond to new treatments.

To test this theory, they gave the mice doses of a chemotherapy agent, temozolomide, currently in use clinically. Temozolomide slowed the growth and reduced the size of tumors in the mice, as it does in human patients.

Next researchers gave the mice rapamycin, an experimental drug currently in clinical trials as a treatment for other cancers. They found the drug was not killing tumor cells but preventing them from growing while the mice received regular doses of the drug. Higher doses could shut off tumor growth in a more long-lasting fashion, but also produced harmful side effects.

Because the trials were in mice, researchers could use a variety of invasive techniques to learn additional details about the effects of the drugs. For example, brain development is ongoing in young children, making the introduction of drugs that kill cells or stop their replication cause for significant concern. The mouse model let researchers look at developmental hotspots in the brain to see if temozolomide or rapamycin was adversely affecting the creation of new brain cells. They found that neither drug was.

Gutmann plans to use the mouse model in a new collaborative network funded by the Children's Tumor Foundation. His group and four other labs will test a variety of compounds against specific tumor types found in individuals affected with neurofibromatosis 1.

"We want to learn if these new drugs work the same in all aspects of the disease," Gutmann says. "We will be using what we learn to provide an efficient, rigorous pipeline for moving promising new drugs from the laboratory to clinical trials."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Match Pediatric Testing Treatment neurofibromatosis tumor cells

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>