Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model tightly matches pediatric tumor syndrome, will speed drug hunt

04.03.2008
Frustrated by the slow pace of new drug development for a condition that causes pediatric brain tumors, a neurologist at Washington University School of Medicine in St. Louis decided to try to fine-tune the animal models used to test new drugs.

Instead of studying one mouse model of the disease causing the brain tumors, the laboratory of David Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology, evaluated three. They "auditioned" the three models to see which was the best match for neurofibromatosis 1, a genetic condition that increases the risk of brain tumors and afflicts more than 100,000 people in the United States.

Animal models have long been used to explore the basic physiology underlying disease and to tentatively try out new remedies, but Gutmann believes that creating a tighter match between the animal models and the human disorder will allow more extensive and more accurate preclinical testing of potential therapies.

"If you think of how we move drugs from testing in the laboratory to testing in humans, this is an exciting step that's likely to speed the translation from bench to bedside," says Gutmann, the senior author of a report in the March 1 Cancer Research. "With more extensive preclinical testing in the mice, we can make sure a new drug is reaching its target protein in tumor cells, we can learn whether the drug is killing tumor cells or shutting off their growth, and we can get some indication of whether the drug is likely to have an adverse effect on the developing brain."

Gutmann is director of the Washington University Neurofibromatosis Center, which facilitates multidisciplinary neurofibromatosis research and is dedicated to developing better treatments to improve the lives of patients affected by the disorder. Fifteen to 20 percent of children with neurofibromatosis 1 develop brain tumors called gliomas that arise from brain cells known as glial cells. Gutmann's lab has studied a mouse model of neurofibromatosis 1 for several years to gain a better understanding of how defects in the NF1 gene cause gliomas.

For the new study, Gutmann and colleagues Joshua Rubin, M.D., Ph.D., assistant professor of pediatrics, neurology and of neurobiology, and Joel Garbow, Ph.D., research associate professor of radiology, compared three mouse brain tumor models of neurofibromatosis 1. One of the models was the line his lab has previously used to study basic tumor biology.

To compare the mouse lines to the human disorder, researchers analyzed where the mice developed tumors, determined how quickly the tumor cells were dividing, and assessed when the tumors ceased growing. Based on these criteria, they learned that the model they had used earlier most faithfully reproduced the important features of the human condition. Researchers hope that this means the model will also give them the most accurate picture of how human patients are likely to respond to new treatments.

To test this theory, they gave the mice doses of a chemotherapy agent, temozolomide, currently in use clinically. Temozolomide slowed the growth and reduced the size of tumors in the mice, as it does in human patients.

Next researchers gave the mice rapamycin, an experimental drug currently in clinical trials as a treatment for other cancers. They found the drug was not killing tumor cells but preventing them from growing while the mice received regular doses of the drug. Higher doses could shut off tumor growth in a more long-lasting fashion, but also produced harmful side effects.

Because the trials were in mice, researchers could use a variety of invasive techniques to learn additional details about the effects of the drugs. For example, brain development is ongoing in young children, making the introduction of drugs that kill cells or stop their replication cause for significant concern. The mouse model let researchers look at developmental hotspots in the brain to see if temozolomide or rapamycin was adversely affecting the creation of new brain cells. They found that neither drug was.

Gutmann plans to use the mouse model in a new collaborative network funded by the Children's Tumor Foundation. His group and four other labs will test a variety of compounds against specific tumor types found in individuals affected with neurofibromatosis 1.

"We want to learn if these new drugs work the same in all aspects of the disease," Gutmann says. "We will be using what we learn to provide an efficient, rigorous pipeline for moving promising new drugs from the laboratory to clinical trials."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Match Pediatric Testing Treatment neurofibromatosis tumor cells

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>