Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model tightly matches pediatric tumor syndrome, will speed drug hunt

04.03.2008
Frustrated by the slow pace of new drug development for a condition that causes pediatric brain tumors, a neurologist at Washington University School of Medicine in St. Louis decided to try to fine-tune the animal models used to test new drugs.

Instead of studying one mouse model of the disease causing the brain tumors, the laboratory of David Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology, evaluated three. They "auditioned" the three models to see which was the best match for neurofibromatosis 1, a genetic condition that increases the risk of brain tumors and afflicts more than 100,000 people in the United States.

Animal models have long been used to explore the basic physiology underlying disease and to tentatively try out new remedies, but Gutmann believes that creating a tighter match between the animal models and the human disorder will allow more extensive and more accurate preclinical testing of potential therapies.

"If you think of how we move drugs from testing in the laboratory to testing in humans, this is an exciting step that's likely to speed the translation from bench to bedside," says Gutmann, the senior author of a report in the March 1 Cancer Research. "With more extensive preclinical testing in the mice, we can make sure a new drug is reaching its target protein in tumor cells, we can learn whether the drug is killing tumor cells or shutting off their growth, and we can get some indication of whether the drug is likely to have an adverse effect on the developing brain."

Gutmann is director of the Washington University Neurofibromatosis Center, which facilitates multidisciplinary neurofibromatosis research and is dedicated to developing better treatments to improve the lives of patients affected by the disorder. Fifteen to 20 percent of children with neurofibromatosis 1 develop brain tumors called gliomas that arise from brain cells known as glial cells. Gutmann's lab has studied a mouse model of neurofibromatosis 1 for several years to gain a better understanding of how defects in the NF1 gene cause gliomas.

For the new study, Gutmann and colleagues Joshua Rubin, M.D., Ph.D., assistant professor of pediatrics, neurology and of neurobiology, and Joel Garbow, Ph.D., research associate professor of radiology, compared three mouse brain tumor models of neurofibromatosis 1. One of the models was the line his lab has previously used to study basic tumor biology.

To compare the mouse lines to the human disorder, researchers analyzed where the mice developed tumors, determined how quickly the tumor cells were dividing, and assessed when the tumors ceased growing. Based on these criteria, they learned that the model they had used earlier most faithfully reproduced the important features of the human condition. Researchers hope that this means the model will also give them the most accurate picture of how human patients are likely to respond to new treatments.

To test this theory, they gave the mice doses of a chemotherapy agent, temozolomide, currently in use clinically. Temozolomide slowed the growth and reduced the size of tumors in the mice, as it does in human patients.

Next researchers gave the mice rapamycin, an experimental drug currently in clinical trials as a treatment for other cancers. They found the drug was not killing tumor cells but preventing them from growing while the mice received regular doses of the drug. Higher doses could shut off tumor growth in a more long-lasting fashion, but also produced harmful side effects.

Because the trials were in mice, researchers could use a variety of invasive techniques to learn additional details about the effects of the drugs. For example, brain development is ongoing in young children, making the introduction of drugs that kill cells or stop their replication cause for significant concern. The mouse model let researchers look at developmental hotspots in the brain to see if temozolomide or rapamycin was adversely affecting the creation of new brain cells. They found that neither drug was.

Gutmann plans to use the mouse model in a new collaborative network funded by the Children's Tumor Foundation. His group and four other labs will test a variety of compounds against specific tumor types found in individuals affected with neurofibromatosis 1.

"We want to learn if these new drugs work the same in all aspects of the disease," Gutmann says. "We will be using what we learn to provide an efficient, rigorous pipeline for moving promising new drugs from the laboratory to clinical trials."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Match Pediatric Testing Treatment neurofibromatosis tumor cells

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>