Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish provide useful screening tool for genes, drugs that protect against hearing loss

04.03.2008
A small striped fish is helping scientists understand what makes people susceptible to a common form of hearing loss, although, in this case, it’s not the fish’s ears that are of interest.

In a study published in the Feb. 29 issue of the journal PLoS Genetics, researchers at the University of Washington have developed a research method that relies on a zebrafish’s lateral line—the faint line running down each side of a fish that enables it to sense its surroundings—to quickly screen for genes and chemical compounds that protect against hearing loss from some medications.

The study was funded in part by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health.

“The fish’s lateral line contains sensory cells that are functionally similar to those found in the inner ear, except these are on the surface of the fish’s body, making them more easily accessible,” said James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. “This means that scientists can very efficiently analyze the sensory structures under different conditions to find out what is likely to cause damage to these structures and, conversely, what can protect them from damage.”

... more about:
»Protect »Screening »compound »hearing »inner

When people are exposed to some antibiotics and chemotherapy agents, the sensory structures in the inner ear, called hair cells, can be irreversibly damaged, resulting in hearing loss and balance problems. Such medications are called ototoxic. People vary widely in their susceptibility to these agents as well as to damage caused by other chemical agents, loud sounds and aging.

To find out why this is so, senior scientists Edwin Rubel, Ph.D., David Raible, Ph.D. and their research team developed a screening strategy that uses hair cells in the lateral line of zebrafish larvae to signal how hair cells in a person’s inner ear might respond under similar conditions. Hair cells are named for small bristly extensions, or stereocilia, jutting from their tops. Movement of fluid (triggered by sound vibrations in the inner ear or changes in water pressure in the fish’s environment) causes the stereocilia to tilt to one side, generating an electrical impulse that travels to the brain.

The researchers first set out to identify genes that may be involved in how hair cells respond to ototoxic medicines. Using a chemical that causes random mutations in zebrafish, the researchers bred various fish families, with each family exhibiting a different set of mutations. The researchers then exposed five-day-old larval offspring to the drug neomycin, a type of antibiotic that damages these hair cells as well as those in the human inner ear. The larvae were then stained to determine if the hair cells were still intact. Fish that were resistant to damage were quickly identified as were those that were especially vulnerable.

Using genetic techniques, the group then examined the larvae’s DNA, searching for segments that were closely tied to the desired property. In doing so, they zoomed in on five mutations—each located on different genes—that, when inherited from each parent, protected against hair cell damage. Further examination revealed that one of the identified genes corresponds to a gene that is also found in other vertebrates, including humans. Another five mutations were identified that offer protection under more complex genetic conditions.

Next, the team investigated whether they could identify chemical compounds that protect hair cells against ototoxic medicines. Using the same screening technique—exposing five-day-old zebrafish larvae to neomycin and later applying special stains to the hair cells—the researchers screened more than 10,000 compounds and narrowed them down to two similar chemicals that provide robust protection of hair cells against the neomycin. One of the compounds was later found to protect hair cells from a mouse’s inner ear against the drug, indicating that the same compound may be protective for other mammals as well.

“One of the pluses about working with zebrafish is that, like other fish, they produce hundreds of offspring. We can look at lots of animals and we can look at many hair cells per animal, which means that we can get good quantitative data,” said Dr. Raible.

The authors suggest that their research technique, which combines chemical screening with traditional genetic approaches, offers a fast and efficient way to identify potential drugs and drug targets that may one day provide therapies for people with hearing loss and balance disorders.

Jennifer Wenger | EurekAlert!
Further information:
http://www.nidcd.nih.gov
http://www.nih.gov

Further reports about: Protect Screening compound hearing inner

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>