Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis bacterium is double-protected

04.03.2008
The first 3-D images that disclosure a double membrane surrounding mycobacteria were recorded by Martinsried scientists, ending a long scientific debate about the mycobacterial outer membrane and opening new pathways to improve the development of chemotherapeutic substances against tuberculosis (PNAS March, 11th, 2008; Early Online Publication).

Robert Koch who detected the tuberculosis causative agent in March 1882 described the contemporary situation: "Statistics tells us that one in seven of all humans dies of tuberculosis..."

Even today, ten million people suffer from the disease yearly, and every day, Mycobacterium tuberculosis causes the death of about 4000 patients. Medical treatment is lengthy and protection through vaccinations is, today as before, insufficient. This is why research groups worldwide study the 'acid-fast rods', which are protected by a complex and hardly penetrable cell wall. Its special structure is the reason for the resistance to external factors and for the inefficient uptake of antibacterial substances.

It has been known for some time that long-chained, strongly bound fatty acids - the mycolic acids - are necessary to preserve the resistance properties of the cell wall. But even 125 years after Koch's discovery, our knowledge of the mycobacterial cell envelope is incomplete and characterized by contradictory hypotheses. Until recently, scientists assumed that mycolic acids form a closed layer, or that they comprise the inner part of a considerably thick and asymmetrical membrane. Now, Harald Engelhardt and his group at the Max Planck Institute of Biochemistry in Martinsried have proved that the outer cell wall layer consists of a distinct lipid bilayer. Its structure, however, is hardly compatible with the current view of the cell wall architecture.

Christian Hoffman, a PhD student in Harald Engelhardt's lab, investigated the cell structure of Mycobacterium smegmatis and Mycobacterium bovis BCG, a close relative to the tuberculosis bacterium, in the electron microscope. The scientists were able to obtain 3-D images of the bilayer structure from intact cells by means of cryo-electron tomography, a technique that was developed at the institute in Martinsried. The method requires projection data from different angles of a shock-frozen cell (-190 °C) that are optimized for the number, contrast and focus of the images. In order to avoid radiation damage, the cell must only be exposed to the electron beam for a limited period of time. The images are thus noisy and lack contrast. The Department for Molecular Structural Biology, headed by Professor Wolfgang Baumeister, and in this case especially Jürgen Plitzko, pioneers development and research of cryo-electron tomography, which is a valuable technique to investigate structures of intact cells in a close-to-life state.

Hoffmann and his colleagues observed a more symmetrical and significantly thinner mycobacterial membrane than previously expected. The researchers therefore probed their results by electron microscopy of ultrathin cryosections of frozen cells (each section 35 millionth of a millimeter in thickness), which had not been treated further, and could confirm their findings. The researchers can now satisfactorily explain how the pore proteins are embedded in outer membrane of Mycobacterium smegmatis. The molecular structure of these proteins did not fit to the existing models of the mycobacterial cell wall.

Harald Engelhardt, the leader of the research project, agrees with previous hypotheses insofar as mycolic acids anchor the outer membrane to the cell wall. "But the membrane is probably not structured the way we thought. The mycolic and other fatty acids must be organized differently in the cell membrane than previously assumed." The Martinsried microbiologists and structural researchers now see the need for a more detailed study of the mycobacterial outer membrane. The recent findings provide an appropriate basis for such inquiries. Because now, distinct studies investigating the translocation of molecular substances across the outer membrane have been made possible, which should also be useful for the development of chemotherapeutic drugs. Engelhardt: "After all, the drugs must pass through cell wall as effectively as possible, and a better understanding of the mycobacterial cell envelope will certainly be helpful."

[HE/EMD]

Original Publication

Christian Hoffmann, Andrew Leis, Michael Niederweis, Jürgen M. Plitzko, and Harald Engelhardt. Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure.

Proceedings of the National Academy of Sciences USA, March 11th, 2008, early online publication, DOI 10.1073/pnas.0709530105)

Weitere Informationen:

Webpage of the Department Molecular Structural Biology (Head: Prof. Dr. Wolfgang Baumeister)

http://www.biochem.mpg.de/baumeister

WHO-Report No. 4: "Anti-tuberculosis drug resistance in the world"
http://www.who.int/tb/features_archive/drsreport_launch_26feb08/en/index.html
Bacteria Which Sense the Earth's Magnetic Field. Press release of the Max Planck Society, November 20th, 2005.
http://www.mpg.de/english/illustrationsDocumentation/documentation/
pressReleases/2005/pressRelease200511171/index.html

Eva-Maria Diehl | idw
Further information:
http://www.biochem.mpg.de/

Further reports about: Martinsried Mycobacterium Tuberculosis mycobacterial mycolic

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>