Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude researchers find key step in programmed cell death

03.03.2008
The discovery provides insight into how certain proteins, including Hax1, work and how they control the process of apoptosis

Investigators at St. Jude Children’s Research Hospital have discovered a dance of proteins that protects certain cells from undergoing apoptosis, also known as programmed cell death. Understanding the fine points of apoptosis is important to researchers seeking ways to control this process.

In a series of experiments, St. Jude researchers found that if any one of three molecules is missing, certain cells lose the ability to protect themselves from apoptosis. A report on this work appears in the advance online publication of “Nature.”

“This is probably the first description of what is happening mechanistically that contributes to the ability of cells to delay apoptosis,” said James Ihle, Ph.D., the paper’s senior author and chair of the St. Jude Department of Biochemistry. “It provides incredible insights into how three proteins work and how they can control apoptosis.”

The molecular interactions that St. Jude researchers describe in “Nature” play out in nerve cells and blood cells that develop from hematopoietic (blood-forming) stem cells.

A research team elsewhere recently reported that Kostmann’s syndrome, a potentially fatal inherited deficiency of granulocytes in children, caused by excessive apoptosis of granulocytes, results from a deficiency in one of the three proteins, called Hax1.

“This suggests that the protein is playing basically the same role in humans as we described in mice,” Ihle said.

Apoptosis rids the body of faulty or unneeded cells. However, molecular malfunctions that trigger apoptosis may cause some diseases, including Parkinson’s disease. Understanding the biochemical interactions that control the extent of programmed cell death could lead to new treatments.

St. Jude biochemists have long studied how cytokines—small proteins used by neurons and blood-borne cells to communicate messages—contribute to keeping cells alive. For example, they demonstrated earlier that most cytokines controlling hematopoietic cells require an enzyme called Jak2, or Jak3 in lymphocytes, at the receptors where cytokines attached to the cell.

In screening for components that are regulated by the Jak enzymes, the St. Jude team found the Hax1 protein.

“That was intriguing because several studies suggested that Hax1 was controlled by cytokine signaling,” Ihle said. “Also, studies have suggested that if you overexpressed Hax1 in cells, the cells were protected from undergoing apoptosis.”

To pursue this lead, the researchers genetically engineered mice that lacked the gene for Hax1. The results showed that apoptosis in the animals’ brain caused extensive nerve cell degeneration that killed the mice within 10 to 12 weeks. Second, apoptosis in immune-system lymphocytes occurred in the altered mice eight hours sooner than in those with the Hax1 gene, when limited amounts of cytokines were available.

“That additional window of survival is extremely important because in the body, cytokines are limiting.” Ihle said. “The key observation was that Hax1 was important in helping cells to survive. Importantly, what happened to the mice we generated was remarkably similar to what happens if you remove the mitochondrial enzymes called HtrA2 or Parl.”

Exploring the similarities, the investigators found that Hax1 and Parl pair up in the inner membrane of the mitochondria—tiny chemical packets that serve as the main energy source for cells. HtrA2 is made in the cell’s cytoplasm and is transported into the mitochondria, where the enzyme must have a region removed for it to be active. This requires snipping away 133 amino acids, the building blocks of proteins. The St. Jude researchers demonstrated that it is the Hax1/Parl pair that positions HtrA2 to allow the precise snipping that is required. Without Hax1, the snipping does not occur and HtrA2 remains inert.

In lymphocytes, members of the Bcl-2 family of proteins both protect and initiate apoptosis. For this reason, Ihle and the researchers explored this family of proteins to understand why lymphocytes needed an active HtrA2 mitochondrial enzyme. This led them to discover that if active HtrA2 were present, the incorporation of a protein called Bax into the mitochondrial outer membrane did not occur. This was significant since accumulation of Bax in the outer mitochondrial membrane allows the release of proteins that set off a chain of biochemical reactions, including the activation of enzymes that are responsible for cell death.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Cytokine Hax1 HtrA2 apoptosis enzyme lymphocytes mitochondrial

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>