Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne bacteria may play large role in precipitation

03.03.2008
MSU professor David Sands' research on airborne bacteria that act as a catalyst for rain and snow has been published by the journal "Science." MSU photo by Kelly Gorham.

A Montana State University professor and his colleagues have found evidence suggesting that airborne bacteria are globally distributed in the atmosphere and may play a large role in the cycle of precipitation.

The research of David Sands, MSU professor of plant sciences and plant pathology, along with his colleagues Christine Foreman, an MSU professor of land resources and environmental sciences, Brent Christner from Louisiana State University and Cindy Morris, will be published today in the journal "Science."

These research findings could potentially supply knowledge that could help reduce drought from Montana to Africa, Sands said.

... more about:
»Cycle »ICE »MSU »Sands »nuclei »precipitation

Sands, Foreman, Morris, and Christner -- who did post-doctorate work at MSU -- examined precipitation from locations as close as Montana and as far away as Russia to show that the most active ice nuclei are actually biological in origin. Nuclei are the seeds around which ice is formed. Snow and most rain begins with the formation of ice in clouds. Dust and soot can also serve as ice nuclei. But biological ice nuclei are different from dust and soot nuclei because only these biological nuclei can cause freezing at warmer temperatures.

Biological precipitation, or the "bio-precipitation" cycle, as Sands calls it, basically is this: bacteria form little groups on the surface of plants. Wind then sweeps the bacteria into the atmosphere, and ice crystals form around them. Water clumps on to the crystals, making them bigger and bigger. The ice crystals turn into rain and fall to the ground. When precipitation occurs, then, the bacteria have the opportunity to make it back down to the ground. If even one bacterium lands on a plant, it can multiply and form groups, thus causing the cycle to repeat itself.

"We think if (the bacteria) couldn't cause ice to form, they couldn't get back down to the ground," Sands said. "As long as it rains, the bacteria grow."

The team's work is far-reaching. Sands and his colleagues have found the bacteria all over the world, including Montana, California, the eastern U.S., Australia, South Africa, Morocco, France and Russia.

The team's research also shows that most known ice-nucleating bacteria are associated with plants and some are capable of causing disease.

"Bacteria have probably been around for a million years," Sands said. "They live on the surface of plants, and may occasionally cause plant disease. But their role in rain-making may be more important."

Indeed, the implications of a relationship between rain and bacteria could be enormous, though they are yet to be proven, Sands said.

For example, a reduced amount of bacteria on crops could affect the climate. Because of the bio-precipitation cycle, overgrazing in a dry year could actually decrease rainfall, which could then make the next year even dryer.

"Drought could be less of a problem once we understand all of this," Sands said.

Sands, who earned a doctorate in pathology and bacteriology from the University of California-Berkeley, proposed the concept of bio-precipitation approximately 25 years ago, but few people believed him.

Since that time, he said, better tools have changed the research climate, because new DNA technology allows researchers to distinguish the bacteria, and giant computers allow people to do meteorological studies with satellites.

"It's fun to see something come out after 25 years," Sands said, "particularly when we knew back then it was true."

More studies must be done, though, because questions remain. For example, since the bacteria do not grow above 84 degrees, precipitation could be affected if the world's weather creeps up and reaches a cut-off point, Sands said. The researchers are also examining the bacteria to find out if they vary by region.

A diverse group of people should be interested in the research, because bio-precipitation could affect many things.

"I want people to be fascinated by the interconnection of things going on in the environment," Sands said. "It's all interconnected."

David Sands, (406) 994-5151 or dsands@montana.edu

David Sands | EurekAlert!
Further information:
http://www.montana.edu

Further reports about: Cycle ICE MSU Sands nuclei precipitation

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>