Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism found that may boost impaired function of leukemia protein

03.03.2008
A new study led by researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) reports on a novel mechanism that can enhance the function of a protein that is frequently impaired in patients with acute forms of leukemia.

The protein, called AML1, plays a critical role in the development of the blood system and in the production of platelets and immune cells. The findings are published in the March 1, 2008, issue of Genes & Development.

According to the study, investigators identified the methyltransferase enzyme that controls the activity of the normal AML1 protein – also called RUNX1 – demonstrating its ability to regulate the function of transcription factors, proteins that control cell fate by turning genes on or off. The researchers found that the cellular pathways that regulate the activity of the normal AML1 protein through a process called arginine methylation cannot similarly regulate the activity of AML1-ETO, a protein associated with causing acute leukemia.

Methylation is the process by which methyltransferases catalyze the attachment of a methyl group to DNA or protein in order to regulate gene expression or protein function. Demethylase enzymes that remove methyl groups from proteins have only recently been discovered.

... more about:
»AML1 »enzyme »leukemia »methyl »regulate

“By manipulating the activity of these enzymes, it may be possible to promote the activity of the normal protein, and thereby lessen the impact of the protein that promotes leukemia,” said the study’s senior author Stephen D. Nimer, MD, Chief of the Hematology Service at MSKCC. “We are just beginning to explore whether we can tilt the balance toward a normally functioning AML1 protein in leukemic cells and either trigger their death or their reversion to normal behavior.”

There are currently no available drugs that target protein methylation, although two drugs that target DNA methylation are FDA approved for treating patients with myelodysplastic syndromes.

“We hope to utilize these new findings to help develop and ultimately test new treatment strategies for patients with either myeloid or lymphoid types of acute leukemia,” said the study’s first author, Xinyang Zhao, a member of Dr. Nimer’s laboratory.

Dr. Nimer has been researching the AML1-ETO protein at MSKCC since 1993. He and his colleagues first demonstrated in 1995 that AML1-ETO functions as a transcriptional repressor and dominantly inhibits AML1 function.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

Further reports about: AML1 enzyme leukemia methyl regulate

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>