Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein protects lung cancer cells from efforts to fix or kill them

03.03.2008
A protein that helps lung cancer cells thrive appears to do so by blocking healthy cells’ ability to fix themselves when radiation or chemicals such as nicotine damage their DNA, according to a University of Florida study to be published Friday (Feb. 29) in the journal Molecular Cell.

High levels of the protein, known as Bc12, are found in the cells of lung cancer patients who smoke.

Previous UF research has shown that nicotine activates the protein, which helps tumor cells live long past their natural lifespan and resist chemotherapy. The new findings explain how the protein enables cancer cells to circumvent the body’s own efforts to change them back into healthy cells -- or evade treatments designed to kill them.

Cancer is frequently associated with the accumulation of genetic aberrations in cells’ chromosomes. If these damaged cells can’t access their built-in repair system and subsequently survive long enough to divide and multiply, they pass along their mutations.

... more about:
»Bc12 »Cancer »DNA »repair

“If a cell experiences DNA damage, often that DNA can be repaired. But we found that Bc12 can block the DNA repair mechanism, which promotes tumor formation and genetic instability,” said Dr. Xingming Deng, an assistant professor in UF’s College of Medicine who is affiliated with the UF Shands Cancer Center. “This is a very important fundamental mechanism that explains why this protein has (a cancer-forming) function.”

Researchers say just one cell that develops a genetic mutation and is unable to repair itself could be enough for a full-blown tumor to develop.

“Lung cancer is the No. 1 killer of all cancer types; it is the most dangerous,” Deng said. “We wanted to find a way to treat lung cancer, how to prevent lung cancer, because lung cancer prognosis is very poor.”

Nearly 162,000 people will die from lung cancer in 2008, accounting for about 29 percent of all cancer deaths, according to the American Cancer Society. More people die of lung cancer than of colon, breast and prostate cancers combined.

In the study, UF scientists performed a series of laboratory experiments on lung cancer cells in culture that illuminated the molecular chain of events that allows Bc12 to disrupt DNA repair.

Deng also plans to explore the possibility that nicotine-induced activation of Bc12 can be blocked to increase chemotherapy’s effectiveness.

“This will probably help us in the future find ways to prevent tumors,” said Deng, adding that the protein could be a target for drug development. “We can target this mechanism and somehow find a way to prevent tumor formation.”

Melanie Fridl Ross | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Bc12 Cancer DNA repair

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>