Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich researchers develop antibody test

03.03.2008
New test for malaria protection

A person's immune system can form antibodies against sugar molecules on the malaria pathogen, which protect against serious illness. A new blood test developed by a team of ETH Zurich and Swiss Tropical Institute researchers headed by Professor Peter Seeberger enables these antibodies to be detected. The researchers' work was published online in the journal "Nature Chemical Biology" on March 2, 2008.

ETH Zurich professor Peter Seeberger has been working on a sugar-based malaria vaccine for years. The new test takes him one important step closer to his goal. The malaria pathogen plasmodium falciparum carries poisonous sugar molecules - called GPIs for short - on its surface that are able to be individually identified. Professor Seeberger's research team is now developing a new method that demonstrates that the malaria pathogen's toxic sugar molecules trigger a specific immune reaction in adults.

Antibodies in blood from malaria regions

Tests show that blood samples taken from adults living in areas of Africa where malaria is endemic contain specific antibodies against particular GPIs. While infection is still possible despite the antibodies, the consequences are less serious. The immune system recognizes the poisonous sugar molecules as foreign bodies and blocks their toxic impact. Not living in high-risk areas, Europeans lack the relevant antibodies. As soon as Europeans are infected with malaria, the number of antibodies increases significantly. Subsequently, there is a direct link between the amount of antibodies and protection against the disease.

Inexpensive detection

This insight is thanks to a novel method for detecting antibodies. Faustin Kamena, a post-doc in Professor Seeberger's lab, has developed a special chip that can, inexpensively and with minute quantities of blood serum and sugar molecules, determine whether or not someone has formed particular antibodies against various GPIs. To this end, the researchers use the purest possible GPIs. These can be produced synthetically and in large amounts in a laboratory, as the Seeberger team has demonstrated in earlier research.

The new method involves affixing over 64 pads comprising pinpoint dots to glass slides. Every little pad consists of several tiny heaps of different GPIs in varying concentrations. When blood serum is then administered to such a pad, possible antibodies specifically bind to certain sugar molecules. Dyes then reveal to which GPIs the antibodies have attached themselves.

Help for infants

Thanks to the information obtained from the chip, scientists can produce the specific sugar molecules that the immune system has to recognize. The findings on natural resistance subsequently acquired are crucial to developing a sugar-based malaria vaccine. This could prove particularly beneficial to children in malaria-infested regions.

The millions of malaria sufferers are primarily infants under the age of five as only adults develop antibodies against the malaria pathogen's sugars. An infant's immune system is incapable of recognizing and combating the toxic sugar molecules. Consequently, a new, selective vaccine is now called for. Professor Seeberger states: "This evidence is another important step towards finding a malaria vaccine because we now know which antibodies protect adults."

Renata Cosby | alfa
Further information:
http://www.seeberger.ethz.ch/research/index
http://www.cc.ethz.ch/media/picturelibrary/news/antikoerper

Further reports about: Antibodies GPIs Seeberger Vaccine develop immune system sugar

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>