Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking schizophrenia genes

03.03.2008
Researchers map genetic alterations associated with human schizophrenia

Japanese scientists have linked atypical expression patterns of the gene FABP7, which encodes the brain fatty acid binding protein 7, with human schizophrenia. Although initially attributed to environmental abnormalities, this debilitating disease is now accepted as being influenced by a strong, yet likely multifactorial, genetic component.

The phenotypic, or behavioral, outcomes of schizophrenia are perhaps just as complicated as the genotypic alterations underlying the disease. Fortunately, suppression of a particular startle response—known as prepulse inhibition (PPI)—provides an easily measurable biological readout of the sensory motor gating mechanisms that are often impaired in schizophrenia.

In an effort to identify genes associated with schizophrenia, a team led by Takeo Yoshikawa at the RIKEN Brain Science Institute in Wako, mapped genetic alterations associated with PPI in mice1.

... more about:
»Expression »Fabp7 »PPI »SCORE »alterations

After tracking the PPI responses of a panel of distinct inbred mouse strains for over one year, the researchers intercrossed the strains having the lowest and highest PPI scores. Next, the team scanned the genomes of the progeny for sets of microsatellite markers, or genetic ‘tags’, and compared the presence of these tags with the PPI scores.

Using progressively rigorous sets of tags, the researchers linked impaired PPI to a region of chromosome 10 containing approximately 30 genes. The team honed in on Fabp7 (Fig. 1), one gene within this region, because of its influence over the metabolism of the polyunsaturated fatty acid DHA (docosahexaenoic acid), a process often impaired in schizophrenia.

Encouragingly, although stronger in males than in females, human schizophrenia patients exhibit abnormally high expression of FABP7 similar to mice exhibiting defective PPI responses. Notably, mice rendered genetically deficient in Fabp7 also score low in PPI measurements and display stronger behavioral responses to chronic NMDA receptor antagonist treatment, another feature of schizophrenia.

Although the team detected defects in the maintenance of neural progenitor cells in Fabp7-deficient mice, future work is needed to elucidate the precise molecular mechanism through which alterations in Fabp7 expression promote schizophrenia-like behavior in mice and humans.

Similarly, why males seem to be more strongly affected by Fabp7 over-expression remains unclear. However, sex hormone-responsive elements in the DNA regions controlling Fabp7 expression might play a role.

“It is well known that malnutrition in utero increases the probability of future schizophrenia. Our results raise the importance of cohort studies to examine whether replenishment of DHA in pregnant mothers can be beneficial in reducing the chance of schizophrenia development in offspring,” says Yoshikawa.

Reference

1. Watanabe, A., Toyota, T., Owada, Y., Hayashi, T., Iwayama, Y., Matsumata, M., Ishitsuka, Y., Nakaya, A., Maekawa, M., Ohnishi, T., et al. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biology 5, 2469–2483 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/394/

Further reports about: Expression Fabp7 PPI SCORE alterations

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>