Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of fossils found in arctic shows plants more developed at earlier time

07.06.2002


Along with Canadian colleagues, a University of North Carolina at Chapel Hill scientist has discovered fossils of plants dating back some 420 million years.



The discovery, made on Bathurst Island in the Northwest Territories about 800 miles from the North Pole, shows vascular plants were more complex at that time than paleontologists previously believed and is significant for that reason, the UNC researcher said.

“These are not the earliest vascular plants ever found, but they are the earliest ever found of this size, complexity and degree of diversification,” said Dr. Patricia G. Gensel, professor of biology at UNC. “They look something like medium-sized grasses, except that they branch.”


The discovery adds to the sparse record of early land plants known from North America, Gensel said. Previously, most information on ancient plants has been based on fossils from Wales, Venezuela and China.

A report about the findings appears in the June issue of the American Journal of Botany. Besides Gensel, authors are UNC graduate student Michele E. Kotyk, Dr. James F. Basinger, professor of geology at the University of Saskatchewan, and Dr. Tim A. de Freitas, a Calgary, Canada geologist working for Nexen Inc.

Bits and pieces of the earliest known land plants date back almost 500 million years to the Ordovician Period, and their fragmentary remains indicate the plants were related to liverworts that exist today, Gensel said. The earliest vascular plants -- ones with water-conducting tissues -- so far are known to date back about 425 million years. Sparsely branched, they were about an eighth of an inch tall and grew a few reproductive bodies known as sporangia on their branches.

By contrast, the new plants, which lived only a few million years later, would have stood four or more inches tall, bore many branches with dense rows of sporangia and probably grew in clusters, she said. They more closely resembled much younger early Devonian plants from about 390 million years ago than any other Silurian forms.

“We found these previously unknown plants in rocky sediments we collected and brought back first by helicopter and then airplane from Bathurst in 1994,” the biologist said. “Because of permafrost, digging is impossible, and we picked them up and chipped them out from exposed slopes on the almost completely barren island. Although we worked in July, some days it stayed near freezing all day long. When these plants were alive this land lay near the equator.”

The team dated specimens by finding them in the same layers as several tiny invertebrate fossilized animals such as graptolites, which under the microscope resemble band saw blades, and conodonts, which resemble miniature jaws and teeth and represent the mouthparts of primitive vertebrates. Such animal remains are excellent index fossils – fossils that indicate time.

“We conclude that the Bathurst Island flora presents the best evidence to date of substantial diversity of form, complexity and stature of vascular plants in this period,” Gensel said.

In 1996, she and colleagues in Virginia and Northern Ireland reported finding fossils of scorpions, millipedes and related arthropods dating back almost 400 million years. Those creatures, which predated dinosaurs and other reptiles by some 50 million to 100 million years, were the largest animals ever found on land up to that time in North America.

“Much of science is devoted to understanding and curing diseases, and that’s as it should be,” Gensel said. “However, we also need to understand where living things have come from, which we can do by studying fossils. That gives us a better perspective on why the Earth and life are as they are today.”


Note: Gensel can be reached at (919) 962-6937 or pgensel@bio.unc.edu
Contact: David Williamson, (919) 962-8596.

David Williamson | EurekAlert

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>