Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of fossils found in arctic shows plants more developed at earlier time

07.06.2002


Along with Canadian colleagues, a University of North Carolina at Chapel Hill scientist has discovered fossils of plants dating back some 420 million years.



The discovery, made on Bathurst Island in the Northwest Territories about 800 miles from the North Pole, shows vascular plants were more complex at that time than paleontologists previously believed and is significant for that reason, the UNC researcher said.

“These are not the earliest vascular plants ever found, but they are the earliest ever found of this size, complexity and degree of diversification,” said Dr. Patricia G. Gensel, professor of biology at UNC. “They look something like medium-sized grasses, except that they branch.”


The discovery adds to the sparse record of early land plants known from North America, Gensel said. Previously, most information on ancient plants has been based on fossils from Wales, Venezuela and China.

A report about the findings appears in the June issue of the American Journal of Botany. Besides Gensel, authors are UNC graduate student Michele E. Kotyk, Dr. James F. Basinger, professor of geology at the University of Saskatchewan, and Dr. Tim A. de Freitas, a Calgary, Canada geologist working for Nexen Inc.

Bits and pieces of the earliest known land plants date back almost 500 million years to the Ordovician Period, and their fragmentary remains indicate the plants were related to liverworts that exist today, Gensel said. The earliest vascular plants -- ones with water-conducting tissues -- so far are known to date back about 425 million years. Sparsely branched, they were about an eighth of an inch tall and grew a few reproductive bodies known as sporangia on their branches.

By contrast, the new plants, which lived only a few million years later, would have stood four or more inches tall, bore many branches with dense rows of sporangia and probably grew in clusters, she said. They more closely resembled much younger early Devonian plants from about 390 million years ago than any other Silurian forms.

“We found these previously unknown plants in rocky sediments we collected and brought back first by helicopter and then airplane from Bathurst in 1994,” the biologist said. “Because of permafrost, digging is impossible, and we picked them up and chipped them out from exposed slopes on the almost completely barren island. Although we worked in July, some days it stayed near freezing all day long. When these plants were alive this land lay near the equator.”

The team dated specimens by finding them in the same layers as several tiny invertebrate fossilized animals such as graptolites, which under the microscope resemble band saw blades, and conodonts, which resemble miniature jaws and teeth and represent the mouthparts of primitive vertebrates. Such animal remains are excellent index fossils – fossils that indicate time.

“We conclude that the Bathurst Island flora presents the best evidence to date of substantial diversity of form, complexity and stature of vascular plants in this period,” Gensel said.

In 1996, she and colleagues in Virginia and Northern Ireland reported finding fossils of scorpions, millipedes and related arthropods dating back almost 400 million years. Those creatures, which predated dinosaurs and other reptiles by some 50 million to 100 million years, were the largest animals ever found on land up to that time in North America.

“Much of science is devoted to understanding and curing diseases, and that’s as it should be,” Gensel said. “However, we also need to understand where living things have come from, which we can do by studying fossils. That gives us a better perspective on why the Earth and life are as they are today.”


Note: Gensel can be reached at (919) 962-6937 or pgensel@bio.unc.edu
Contact: David Williamson, (919) 962-8596.

David Williamson | EurekAlert

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>