Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of fossils found in arctic shows plants more developed at earlier time

07.06.2002


Along with Canadian colleagues, a University of North Carolina at Chapel Hill scientist has discovered fossils of plants dating back some 420 million years.



The discovery, made on Bathurst Island in the Northwest Territories about 800 miles from the North Pole, shows vascular plants were more complex at that time than paleontologists previously believed and is significant for that reason, the UNC researcher said.

“These are not the earliest vascular plants ever found, but they are the earliest ever found of this size, complexity and degree of diversification,” said Dr. Patricia G. Gensel, professor of biology at UNC. “They look something like medium-sized grasses, except that they branch.”


The discovery adds to the sparse record of early land plants known from North America, Gensel said. Previously, most information on ancient plants has been based on fossils from Wales, Venezuela and China.

A report about the findings appears in the June issue of the American Journal of Botany. Besides Gensel, authors are UNC graduate student Michele E. Kotyk, Dr. James F. Basinger, professor of geology at the University of Saskatchewan, and Dr. Tim A. de Freitas, a Calgary, Canada geologist working for Nexen Inc.

Bits and pieces of the earliest known land plants date back almost 500 million years to the Ordovician Period, and their fragmentary remains indicate the plants were related to liverworts that exist today, Gensel said. The earliest vascular plants -- ones with water-conducting tissues -- so far are known to date back about 425 million years. Sparsely branched, they were about an eighth of an inch tall and grew a few reproductive bodies known as sporangia on their branches.

By contrast, the new plants, which lived only a few million years later, would have stood four or more inches tall, bore many branches with dense rows of sporangia and probably grew in clusters, she said. They more closely resembled much younger early Devonian plants from about 390 million years ago than any other Silurian forms.

“We found these previously unknown plants in rocky sediments we collected and brought back first by helicopter and then airplane from Bathurst in 1994,” the biologist said. “Because of permafrost, digging is impossible, and we picked them up and chipped them out from exposed slopes on the almost completely barren island. Although we worked in July, some days it stayed near freezing all day long. When these plants were alive this land lay near the equator.”

The team dated specimens by finding them in the same layers as several tiny invertebrate fossilized animals such as graptolites, which under the microscope resemble band saw blades, and conodonts, which resemble miniature jaws and teeth and represent the mouthparts of primitive vertebrates. Such animal remains are excellent index fossils – fossils that indicate time.

“We conclude that the Bathurst Island flora presents the best evidence to date of substantial diversity of form, complexity and stature of vascular plants in this period,” Gensel said.

In 1996, she and colleagues in Virginia and Northern Ireland reported finding fossils of scorpions, millipedes and related arthropods dating back almost 400 million years. Those creatures, which predated dinosaurs and other reptiles by some 50 million to 100 million years, were the largest animals ever found on land up to that time in North America.

“Much of science is devoted to understanding and curing diseases, and that’s as it should be,” Gensel said. “However, we also need to understand where living things have come from, which we can do by studying fossils. That gives us a better perspective on why the Earth and life are as they are today.”


Note: Gensel can be reached at (919) 962-6937 or pgensel@bio.unc.edu
Contact: David Williamson, (919) 962-8596.

David Williamson | EurekAlert

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>