Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind tunnel experiments award flight certificate to bats

29.02.2008
What’s the similarity between a bumblebee and a hummingbird? None – apart from one thing: neither the bumblebee nor the hummingbird should be ebale to fly according to classic wing theory. Yet, this is what they do for a living.

In 1995 the conundrum of bumblebee flight got its final solution. And this week the aerodynamics of a hovering bat species has been revealed. Its flight was studied in the wind tunnel laboratory of Lund University, and the results are published in the prestigious journal Science.

The wind tunnel at Lund University is specially crafted for research on bird flight. Birds fly “at the spot” against a headwind, allowing detailed investigation of wing movements using high speed video cameras. It’s also possible to visualize the vortices around the wings and in the wake using fog as tracer particles.

In 2003 professor Anders Hedenström investigated the aerodynamics of bird flight using this method for the first time. In the spring 2007 his lab presented results from applying this method to flying bats for the first time. A nectar-feeding bat species, Palla’s long-tongued bat, was trained to visit a feeder in the wind tunnel. By varying the speed between 0 m/s (hovering) to 7 m/s, different behaviors were studied.

... more about:
»Flight »Hedenström »Tunnel »vortices

"When we investigated the aerodynamics of our bats we discovered that the wings generated more lift than they should at the slowest speeds (as dictated by classic wing theory),"says professor Hedenström.

"We recorded vortices shed in the wake, which we know well from our previous studies on birds. Now, our new study show that a stable leading edge vortex (LEV) is developed on top of the wing, and this vortex adds significant amounts of lift. Such vortices were previously known in insects, for example in bumblebees, and it was the discovery of leading edge vortices that finally resolved the bumblebee flight conundrum."

How can the bats generate such high lift? One of the team members and lead author of the new study, Florian Muijres, explains:

"The high lift arises because the bats can actively change the shape (curvature) by their elongated fingers and by muscle fibers in their membranous wing. A bumblebee cannot do this; its wings are stiff. This is compensated for by the wing-beat frequency. Bats beat their wings up to 17 times per second while the bumblebee can approach 200 wing-beats per second."

The paper in Science is: Leading-Edge Vortex Improves Lift in Slow-Flying Bats, authors are F T Muijres, L C Johansson, R Barfield, M Wolf, G R Spedding and A Hedenström.

Image legends:
The bats are highly maneuverable and can make quick turns during flights
http://www.naturvetenskap.kanslimn.lu.se/bataction.jpg
(Photo: L C Johansson, M Wolf, A Hedenström)
Vortex system on the bat’s wings – it is the vortex along the leading edge that is now described for the first time

http://www.naturvetenskap.kanslimn.lu.se/BoW/GF/bat_vortex_pattern.tif

Ingela Björck | alfa
Further information:
http://www.lu.se

Further reports about: Flight Hedenström Tunnel vortices

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>