Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Roots Find A Route

29.02.2008
Scientists at the John Innes Centre in Norwich have discovered how roots find their way past obstacles to grow through soil. The discovery, described in the forthcoming edition of Science, also explains how germinating seedlings penetrate the soil without pushing themselves out as they burrow.

“The key is in the fuzzy coat of hairs on the roots of plants” says Professor Liam Dolan. “We have identified a growth control mechanism that enables these hairs to find their way and to elongate when their path is clear”.

Root hairs explore the soil in much the same way as a person would feel their way in the dark. If they come across an obstacle, they feel their way around until they can continue growing in an opening. In the meantime, the plant is held in place as the hairs grip the soil.

This ability is governed by a self-reinforcing cycle. A protein at the tip of root hairs called RHD2 produces free radicals that stimulate the uptake of calcium from the soil. Calcium then stimulates the activity of RHD2, producing more free radicals and further uptake of calcium. When an obstacle blocks the hair’s path, the cycle is broken and growth starts in another location and direction.

... more about:
»Soil »grow »hairs

“This remarkable system gives plants the flexibility to explore a complex environment and to colonise even the most unpromising soils”, says Professor Dolan.

“It also explains how seedlings are able to grow so quickly once they have established”.

In nutrient poor soils such as in parts of Australia and sub-Saharan Africa, plants have adapted by producing more root hairs. A better understanding of this adaptation will allow the development of crops able to grow in inhospitable environments.

This research was funded by the BBSRC, a Marie Curie International Incoming Fellowship and MEXT of Japan.

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk
http://cordis.europa.eu/improving/fellowships/home.htm
http://www.mext.go.jp/english/

Further reports about: Soil grow hairs

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>