Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncharged organic molecule can bind negatively charged ions

28.02.2008
Indiana University Bloomington chemists have designed an organic molecule that binds negatively charged ions, a feat they hope will lead to the development of a whole new molecular toolbox for biologists, chemists and medical researchers who want to remove chlorine, fluorine and other negatively charged ions from their solutions.

"What we've done is create an efficient synthesis that gives us access to a whole new family of binding agents," said Amar Flood, who reports the discovery with postdoctoral scholar Yongjun Li in Angewandte Chemie this week. "The synthesis is extremely modular, as well, so we imagine these molecules can be easily modified to bind a wide variety of negative ions with great specificity."

Chelating agents are small molecules that grab atoms (or, sometimes, even smaller molecules) out of a solution and hold onto them. Chelators play a valuable role in both nature and laboratory settings. For example, the human protein calmodulin not only grabs positively charged calcium ions out of the solution surrounding it, it also influences cell processes according to how many calcium ions it has grabbed. In labs, EDTA (ethylenediaminetetraacetic acid) is frequently used to remove calcium and magnesium ions so that chemical reactions go faster or more efficiently.

Many organic molecules exist that can bind positively charged ions, or cations, and this has much to do with the fact that it is easy to synthesize organic molecules with negatively charged parts. It is those negatively charged parts that interact with positive ions, or cations, grabbing them out of solution and holding onto them so the cations cannot react or interfere with other processes.

... more about:
»Atoms »Ion »Organic »Solution »bind »charged »negatively

Attempts at manufacturing organic binding agents with positively charged parts is not hard, but designing them in such a way that they don't attract the attention of solvent molecules has been a major challenge for chemists.

Flood and Li's solution was to create a donut-shaped organic molecule whose center would serve as the binding spot. A halide ion might fit snugly inside the hole, but the arrangement of atoms surrounding the hole would exclude any solutions.

Flood also wanted the synthesis of such a molecule to be cheap, easy and flexible, so he looked to the "click chemistry" devised by Scripps Research Institute chemist K. Barry Sharpless. Click chemistry is an efficient method of joining molecules together to form larger molecules. Flood's particular application of click chemistry results in an eight-member macrocycle with a 3.7 angstrom hole in the middle. The more-or-less symmetrical molecule that Flood and Li built contains four triazole rings sporting three nitrogen atoms each. It is presumed the nitrogens withdraw electron density from the carbon and hydrogen atoms closest to the molecule's hole, thereby creating an alluring binding spot for fluorine or chlorine ions. This binding is made all the more orderly because the macrocycle is preorganized to host its anionic guest.

"This thing is so easy to make," Flood said. "The triazole moiety has got more character to it than meets the eye. It's not just a byproduct of the click chemistry. We see lots of potential in it."

The other four members of Flood and Li's eight-member ring are entirely substitutable. Modifying these may give the chelator different binding affinities for a given anion.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: Atoms Ion Organic Solution bind charged negatively

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>