Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncharged organic molecule can bind negatively charged ions

28.02.2008
Indiana University Bloomington chemists have designed an organic molecule that binds negatively charged ions, a feat they hope will lead to the development of a whole new molecular toolbox for biologists, chemists and medical researchers who want to remove chlorine, fluorine and other negatively charged ions from their solutions.

"What we've done is create an efficient synthesis that gives us access to a whole new family of binding agents," said Amar Flood, who reports the discovery with postdoctoral scholar Yongjun Li in Angewandte Chemie this week. "The synthesis is extremely modular, as well, so we imagine these molecules can be easily modified to bind a wide variety of negative ions with great specificity."

Chelating agents are small molecules that grab atoms (or, sometimes, even smaller molecules) out of a solution and hold onto them. Chelators play a valuable role in both nature and laboratory settings. For example, the human protein calmodulin not only grabs positively charged calcium ions out of the solution surrounding it, it also influences cell processes according to how many calcium ions it has grabbed. In labs, EDTA (ethylenediaminetetraacetic acid) is frequently used to remove calcium and magnesium ions so that chemical reactions go faster or more efficiently.

Many organic molecules exist that can bind positively charged ions, or cations, and this has much to do with the fact that it is easy to synthesize organic molecules with negatively charged parts. It is those negatively charged parts that interact with positive ions, or cations, grabbing them out of solution and holding onto them so the cations cannot react or interfere with other processes.

... more about:
»Atoms »Ion »Organic »Solution »bind »charged »negatively

Attempts at manufacturing organic binding agents with positively charged parts is not hard, but designing them in such a way that they don't attract the attention of solvent molecules has been a major challenge for chemists.

Flood and Li's solution was to create a donut-shaped organic molecule whose center would serve as the binding spot. A halide ion might fit snugly inside the hole, but the arrangement of atoms surrounding the hole would exclude any solutions.

Flood also wanted the synthesis of such a molecule to be cheap, easy and flexible, so he looked to the "click chemistry" devised by Scripps Research Institute chemist K. Barry Sharpless. Click chemistry is an efficient method of joining molecules together to form larger molecules. Flood's particular application of click chemistry results in an eight-member macrocycle with a 3.7 angstrom hole in the middle. The more-or-less symmetrical molecule that Flood and Li built contains four triazole rings sporting three nitrogen atoms each. It is presumed the nitrogens withdraw electron density from the carbon and hydrogen atoms closest to the molecule's hole, thereby creating an alluring binding spot for fluorine or chlorine ions. This binding is made all the more orderly because the macrocycle is preorganized to host its anionic guest.

"This thing is so easy to make," Flood said. "The triazole moiety has got more character to it than meets the eye. It's not just a byproduct of the click chemistry. We see lots of potential in it."

The other four members of Flood and Li's eight-member ring are entirely substitutable. Modifying these may give the chelator different binding affinities for a given anion.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: Atoms Ion Organic Solution bind charged negatively

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>