Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic structure of DNA revealed for 1st time

28.02.2008
Utilizing a technique that combines low temperature measurements and theoretical calculations, Hebrew University of Jerusalem scientists and others have revealed for the first time the electronic structure of single DNA molecules.

The knowledge of the electronic properties of DNA is an important issue in many scientific areas from biochemistry to nanotechnology -- for example in the study of DNA damage by ultraviolet radiation that may cause the generation of free radicals and genetic mutations. In those cases, DNA repair occurs spontaneously via an electronic charge transfer along the DNA helix that restores the damaged molecular bonds.

In nano-bioelectronics, which is the advanced research field devoted to the study of biological molecules (to produce electrical nanocircuits, for example), it has been suggested that DNA, or its derivatives, may become used as possible conducting molecular wires in the realization of molecular computing networks which are smaller and more efficient than those produced today with silicon technology.

The knowledge that has been acquired in this project, say the researchers, may also be relevant for current attempts to develop new sophisticated, reliable, faster and cheaper ways to decode the sequence of human DNA.

... more about:
»DNA »Electronic »structure

The research, published in the prestigious journal Nature Materials, is a result of an international collaboration. The research was conducted by Errez Shapir and coordinated by Dr. Danny Porath at the Department of Physical Chemistry and Center for Nanoscience and Nanotechnology at the Hebrew University and by Dr. Rosa Di Felice at the S3 Center of INFM-CNR in Modena, Italy. Also collaborating in the project were Prof. Alexander Kotlyar at Tel Aviv University, who synthesized the molecules, the CINECA supercomputing center in Italy, and Prof. Gianaurelio Cuniberti at the University of Regensburg, Germany.

In their work, the researchers were able to decode the electronic structure of DNA and to understand how the electrons distribute into the various parts of the double helix, a result that has been pursued by scientists for many years, but was previously hindered by technical problems.

The success of this project was finally achieved thanks to collaboration between experimental and theoretical scientists who worked with long and homogeneous DNA molecules at minus 195 degrees Celsius, using a scanning tunneling microscope (STM) to measure the current that passes across a molecule deposited on a gold substrate. Then, by means of theoretical calculations based on the solution of quantum equations, the electronic structure of DNA corresponding to the measured current has been obtained. These results also suggest an identification of the parts of the double helix that contribute to the charge flow along the molecule.

For further information:
Jerry Barach,
Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu,
Hebrew University spokesperson,
Tel: 054-8820016.

Jerry Barach | The Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: DNA Electronic structure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>