Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in plant research: gene discovery provides new tool to develop drought-tolerant crops

28.02.2008
The research groups of the Department of Biological and Environmental Sciences of the University of Helsinki and the University of California in San Diego have discovered a gene that is centrally involved in the regulation of carbon dioxide uptake for photosynthesis and water evaporation in plants.

The discovery can aid the development of drought-tolerant crops. The article is published online ahead of print in Nature’s Advance Online Publication (AOP) on 27 February 2008.

Stomata are tiny pores on the plant leaf surface, through which the leaves absorb carbon dioxide necessary for photosynthesis and release moisture into the air. The plasma membranes of the guard cells that surround the stomatal pore contain several types of ion channels which control the opening and closing of the circular guard cells when the plant encounters a stressful situation, such as increased ozone in the air or drought.

The regulation of stomata is an intensively-studied topic and several ion channel types that control their activity have been discovered earlier. However, an anion channel, which is of central importance in the regulation of stomatal activity, was identified only recently by Finnish and American scientist. A measuring device developed at the University of Tartu, Estonia, was of great help in the process.

... more about:
»Anion »Carbon »Ion »carbon dioxide »crops »develop »dioxide »ozone »stomata »stomatal

Professor Jaakko Kangasjärvi and his research group from the University of Helsinki identified the anion channel using a mutation of Arabidopsis thaliana commonly known as thale cress. The mutant does not react by closing its stomata as a response to high ozone or carbon dioxide concentration in the air like a healthy plant does. Scientist at the University of California demonstrated with electrophysiological measurements that the gene identified encodes an anion channel involved in the regulation of stomatal activities.

The gene discovered is of central importance for the mechanisms of stomatal regulation. Unlike the ion channels detected previously, this newly discovered anion channel takes part in the regulation of all the main stomatal activities.

Climate change makes it all the more important to know about the mechanisms involved in stomata regulation. Aridity is on the increase across the globe, as is the world population. Increasingly dry areas should be taken into cultivation to ensure food production. When developing crops that thrive in dry areas, it is important to know well the mechanisms that regulate stomata, through which plants evaporate moisture.

The effects of climate change, which increases atmospheric ozone and carbon dioxide concentrations, cause another challenge for plants. Plants protect themselves against high ozone by closing the stomata on their leaves. While this protection mechanism minimises damage to the plant, it also reduces carbon dioxide uptake for photosynthesis and thus could reduce the sequestering of the excess atmospheric carbon in plant material. A different kind of plant, however, could grow better in the new conditions. This research will provide a new tool for geneticists in the development of drought-resistant plants.

Kirsikka Mattila | alfa
Further information:
http://www.helsinki.fi

Further reports about: Anion Carbon Ion carbon dioxide crops develop dioxide ozone stomata stomatal

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>