Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centuries-old Maya Blue mystery finally solved

27.02.2008
Production of the renowned, extremely stable pigment was part of ritual sacrifices at Chichén Itzá

Anthropologists from Wheaton College (Illinois) and The Field Museum have discovered how the ancient Maya produced an unusual and widely studied blue pigment that was used in offerings, pottery, murals and other contexts across Mesoamerica from about A.D. 300 to 1500.

First identified in 1931, this blue pigment (known as Maya Blue) has puzzled archaeologists, chemists and material scientists for years because of its unusual chemical stability, composition and persistent color in one of the world’s harshest climates.

The anthropologists solved another old mystery, namely the presence of a 14-foot layer of blue precipitate found at the bottom of the Sacred Cenote (a natural well) at Chichén Itzá. This remarkably thick blue layer was discovered at the beginning of the 20th century when the well was dredged.

Chichén Itzá, one of the Seven Wonders of the Ancient World, is an important pre-Columbian archeological site built by the Maya who lived on what is now the Yucatán Peninsula of Mexico.

The findings from this research will be published online Feb. 26, 2008, by the prestigious British journal Antiquity and will appear in the print version of the quarterly journal to be released in early March.

According to 16th Century textual accounts, blue was the color of sacrifice for the ancient Maya. They painted human beings blue before thrusting them backwards on an altar (see below for image) and cutting their beating heart from their bodies. Human sacrifices were also painted blue before they were thrown into the Sacred Cenote at Chichén Itzá. In addition, blue was used on murals, pottery, copal incense, rubber, wood and other items thrown into the well.

The new research concludes that the sacrificial blue paint found at this site was not just any pigment. Instead, it was the renowned Maya Blue – an important, vivid, virtually indestructible pigment.

Maya Blue is resistant to age, acid, weathering, biodegradation and even modern chemical solvents. It has been called “one of the great technological and artistic achievements of Mesoamerica.”

Scientists have long known that the remarkably stable Maya Blue results from a unique chemical bond between indigo and palygorskite, an unusual clay mineral that, unlike most clay minerals, has long interior channels. Several studies have found that Maya Blue can be created by heating a mixture of palygorskite with a small amount of indigo, but they have not been able to discover how the ancient Maya themselves actually produced the pigment.

The new research shows that at Chichén Itzá the creation of Maya Blue was actually a part of the performance of rituals that took place alongside the Sacred Cenote. Specifically, the indigo and palygorskite were fused together with heat by burning a mixture of copal incense, palygorskite and probably the leaves of the indigo plant. Then the sacrifices were painted blue and thrown into the Sacred Cenote.

“These sacrifices were aimed at placating the rain god Chaak,” said Dean E. Arnold, Professor of Anthropology at Wheaton College, Research Associate at The Field Museum and lead author of the study. “The ritual combination of these three materials, each of which was used for healing, had great symbolic value and ritualistic significance.

“The Maya used indigo, copal incense and palygorskite for medicinal purposes,” Arnold continued. “So, what we have here are three healing elements that were combined with fire during the ritual at the edge of the Sacred Cenote. The result created Maya Blue, symbolic of the healing power of water in an agricultural community.”

Rain was critical to the ancient Maya of northern Yucatan. From January through mid-May there is little rain – so little that the dry season could be described as a seasonal drought. “The offering of three healing elements thus fed Chaak and symbolically brought him into the ritual in the form a bright blue color that hopefully would bring rainfall and allow the corn to grow again,” Arnold said.

Museum collections play key role

One of the keys to solving the mystery of Maya Blue production was a three-footed pottery bowl (Field Museum catalog number 1969.189262; see below for reference to image) containing rarely preserved copal dredged from the Sacred Cenote at Chichén Itzá in 1904 and traded to The Field Museum in the 1930s. Preserved in the copal were fragments of a white substance and blue pigment. Using The Field Museum’s scanning electron microscope, the authors studied these inclusions and found signatures for palygorskite and indigo. From this they concluded that the Maya produced Maya Blue as part of their sacrificial ceremonies.

“This study documents the analytical value of museum collections for resolving long-standing research questions,” said Gary Feinman, Curator of Anthropology at The Field Museum and co-author of the study.

But other knowledge was necessary to understand the significance of the bowl and the hardened copal it contains.

“This study required documentary, ethnographic and experimental research to establish the full context and use of the artifacts,” Feinman said. “Our work emphasizes the potential rewards of scientific work on old museum collections. It also shows that scientific analysis is necessary but not sufficient for understanding museum objects.”

It is this broad knowledge coupled with the scientific analysis that has enabled the scientists to finally – after more than 100 years – explain the thick layer of blue precipitate at the bottom of the Sacred Cenote at Chichén Itzá.

Already knowing that Maya Blue was central to Maya ritualistic sacrifices together with discovering that the pigment was produced right beside the Cenote solved the mystery of the 14-foot layer of blue precipitate: So many sacrifices – from pots to more than 100 human beings – were thrown into the Sacred Cenote that ultimately a layer of the pigment washed off the sacrifices and settled at the bottom of the well. (Although fully formed Maya Blue is extremely durable, it can be washed off with water, especially if there is no binder to help it adhere to the object on which it is placed.)

Other objects in The Field Museum’s collections may reveal more information about Maya Blue, the scientists said. For example, identification of the plant materials on the bottom of the copal incense in other bowls dredged from the Sacred Cenote at Chichén Itzá could reveal which portions of the indigo plant were used to make Maya Blue.

“The Field Museum’s collection was critical in solving this mystery,” Arnold concluded. “This bowl has been in the collection for 75 years yet only now have we been able to use it in discovering the ancient Maya technology of making Maya Blue.”

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

Further reports about: Blue Cenote Chichén Indigo Itzá Maya Pigment copal healing incense palygorskite produced

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>