Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify proteins that help bacteria put up a fight

27.02.2008
Scientists have identified the role of two proteins that contribute to disease-causing bacteria cells’ versatility in resisting certain classes of antibiotics.

The finding is a step toward development of drug therapies that could target bacterial resistance at its cellular source. Before researchers can design such drugs, they must understand all of the activities at play in the conflict between bacteria and the agents that kill them.

This finding by Ohio State University microbiologists extends the understanding of how bacteria cells resist antibiotics through the activities of two genetically distinct forms of what are called MprFs, or multiple peptide resistance factors. The proteins they studied are MprF1 and MprF2.

These proteins were found to be key to the mechanism allowing bacteria cells to change the electrical charge of their membrane, which is how the cells develop their resistance to certain antimicrobial agents and, more generally, how they adapt their membrane to new environmental conditions, such as those provided by their host organism.

... more about:
»Ibba »MprF »MprF1 »acid »amino »antibiotic »bacteria »modification »resistance

“Both of these proteins are potentially very good drug targets because in theory, if you can target them and inhibit their action, you can make bacteria strains more susceptible to existing antibiotics,” said Michael Ibba, associate professor of microbiology at Ohio State and a coauthor of the study.

The findings are described online in this week’s issue of Proceedings of the National Academy of Sciences.

Scientists have already observed that the cell membranes of many disease-causing bacteria develop resistance by changing their electrical charge from negative to positive. Many antibiotics work because they carry a positive charge that attracts them to negatively charged bacteria cells. The opposite charges allow antibiotics to penetrate and kill bacteria. But by changing their naturally occurring negative charge to positive, some bacteria cells establish a protective “coat” that repels the antibiotic.

A common example of antibiotic resistance is Methicillin-resistant Staphylococcus aureus (MRSA), the strain of bacteria responsible for thousands of difficult-to-treat infections reported in humans each year.

“There is a dispute that remains unresolved as to whether or not this pathway we’re investigating is involved in MRSA. It’s very unclear. By understanding the mechanism, we might be able to find out if this is involved in MRSA or not,” Ibba said.

Ibba and Hervé Roy, a postdoctoral researcher at Ohio State and lead author of the study, concentrated on exploring the activities of these specific MprF proteins, which are just two of dozens of forms of a class of genes associated with the development of resistance in about 200 bacteria species. They investigated the activity of two forms of MprF from the pathogen Clostridium perfringens, one of the most common sources of food poisoning in the United States.

MprF proteins affect the membrane’s charge by using an adapter molecule, called transfer RNA (tRNA), to transfer amino acids to the lipids that make up the cell membrane. This action leads to modification of the membrane and the change in its charge.

Ibba and Roy found that both MprF1 and MprF2 perform this same function, but they use different amino acids that lead to the modification. The amino acid lysine has already been identified as a player in this modification, and is used by MprF2. Ibba and Roy found that MprF1, however, uses the amino acid alanine instead. This amino acid also contributes to cell membrane modification and seems to have additional functions that remain unknown.

“This is a new function that we discovered, that MprF1 uses alanine, which then allows the cell to fine tune the properties of the membrane,” Roy said. “Earlier studies found these effects on the membrane, but no one knew what protein caused it.”

What makes these proteins even more potent in the resistance effort is that they can use the adapter molecule in a variety of forms to achieve membrane modification. When the researchers manipulated the tRNA’s structure and properties to match differences in the molecule that would occur in different species of bacteria, the proteins could still recognize the molecule and put it to use to perform the amino acid transfer that changes the cell membrane.

“This means that there is no species barrier for the spread of this virulence factor among other bacteria because this protein can recognize tRNA in any species, no matter what it looks like,” Roy said.

Ibba and Roy describe their findings as only the beginning of investigating the role of the MprF family of proteins in bacteria. They believe other amino acids could also be used that would modify bacteria cell membranes, and are investigating additional pathways within the cells that lead to remodeled membranes.

“We know the change to the membrane is key to resistance,” Ibba said. “We now know there is not just one way that can happen. We have just found a second way an organism can do this, and it is able to make the change to the membrane in two different ways. From our findings there are almost certainly even more ways that the membrane can be modified, and that’s what we’re looking for next.”

Michael Ibba | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Ibba MprF MprF1 acid amino antibiotic bacteria modification resistance

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>