Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia geneticists uncover new gene involved in determining hair texture and density in humans

27.02.2008
Findings may lead to new treatments for excessive or abnormal hair growth

A Columbia University Medical Center research team has discovered a new gene involved in determining hair texture in humans. The team's genetic analysis demonstrated that mutations in a gene, known as P2RY5, cause hereditary "woolly hair" — hair that is coarse, dry, tightly curled and sparse.

"Our findings indicate that mutations in the P2RY5 gene cause hereditary woolly hair. This is significant as it represents the discovery of the first new gene whose primary function seems to be the determination of hair texture in humans," said lead author Angela M. Christiano, Ph.D., the Richard and Mildred Rhodebeck Professor of Dermatology and Genetics & Development, at the Columbia University College of Physicians and Surgeons.

"This genetic finding may inform the development of new treatments for excessive or unwanted hair, or potentially hair growth." added Dr. Christiano.

... more about:
»GPCR »Genetic »Mutation »P2RY5 »families »hereditary »represent »woolly

Findings were published in an online edition of Nature Genetics at 1 p.m. EST on Sunday, February 24, 2008. The paper will appear in the journal's March print issue.

The genetic causes of hair texture in humans are largely unknown. Hair shafts emerge from the surface of the skin and display wide variability in texture and color among individuals of different populations around the world.

Since research has shown that woolly hair was common among Pakistani families, Dr. Christiano and her colleagues set out to determine why this type of hair was specific to this group of people. They hoped that finding the genetic basis of this unique type of hair would help them to distinguish other genetic hair types, and to learn more about the genetic underpinnings of different hair textures.

Much of Dr. Christiano's research has focused on dermatologic variants found in Pakistani families, as they often represent ideal subjects for genetic analyses as they tend to be relatively homogeneous, with close-knit families that tend to live nearby one another, and often intermarry.

To identify a gene involved in controlling hair texture, Dr. Christiano and her team performed a genetic analysis of six families of Pakistani origin, who all shared hereditary woolly hair. The cause of hereditary woolly hair was found to be a mutation in a gene called P2RY5. Until this discovery, the pathogenesis of hereditary woolly hair had been largely unknown.

As the authors write in the paper, "The bulb region of plucked hairs from woolly hair patients showed irregular bending without attachment of the root sheath." They propose that mutations in P2RY5 most likely result in hair follicle disruptions, which then compromise its anchoring to the hair shaft and cause the abnormal bending of the bulb region, leading to woolly hair.

Dr. Christiano's discoveries have led to the identification of several genes controlling human hair growth. It remains to be determined whether common variants on the P2RY5 gene can also contribute to naturally occurring variations in hair texture between different human populations.

According to the researchers, P2RY5 is the first gene of a type known as a G-protein coupled receptor (GPCR) implicated in a human hair disorder — thereby making it possible to develop drugs that target this receptor. GPCRs represent the largest known class of molecular targets with proven therapeutic value. It is estimated that more than 40 percent of existing drugs work by targeting GPCR drug targets; this target class represents a large fraction of the total biological targets against which FDA-approved oral drugs are directed. Of the top 200 best-selling prescription drugs more than 20 percent interact with GPCRs, providing worldwide sales of over $20 billion.

Elizabeth Streich | EurekAlert!
Further information:
http://www.columbia.edu
http://www.cumc.columbia.edu

Further reports about: GPCR Genetic Mutation P2RY5 families hereditary represent woolly

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>