Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Animal Magnetism Provides a Sense of Direction

The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

They may not be on most people’s list of most attractive species, but bats definitely have animal magnetism. Researchers from the Universities of Leeds and Princeton have discovered that bats use a magnetic substance in their body called magnetite as an ‘internal compass’ to help them navigate.

Dr Richard Holland from Leeds' Faculty of Biological Sciences and Professor Martin Wikelski from Princeton University studied the directions in which different groups of Big Brown bats flew after they had been given different magnetic pulses and released 20km north of their home roost. The findings are published in the current issue of PLoS ONE.

Dr Holland was part of the team which, in 2006, discovered that bats used the Earth’s magnetic field to get around, but until now, how bats were able to sense the field was still unknown. Big Brown bats were put through a magnetic pulse 5000 times stronger than the Earth’s magnetic field, but orientated the opposite way(1).

... more about:
»Magnetic »PLoS »PuLSE »TRACK »orientation »satellite

Dr Holland said: “We had three groups of bats. One had undergone the magnetic pulse with a different orientation, and one control group had received no pulse at all. The third group had undergone the pulse, but in the same orientation as the Earth’s magnetic field. By including this group, we could easily see if changes in behaviour were the result of confusion caused by the pulse itself rather the impact of its orientation on the magnetite.”

The control group made their way home as normal, as did those which had undergone the pulse with the same orientation to the Earth’s magnetic field. But of those which had been through the pulse with a different orientation, half went home but half went in the opposite direction.

“This clearly showed that it is the magnetite in their cells which give bats their direction as we were able to change how the bats used it as an internal compass, turning their north into south,” says Dr Holland. “But as only half were affected, it’s likely there is another mechanism as well, which in some bats enabled them to override the impact of the pulse.”

Magnetite is found in the cells of many birds and mammals, including humans, but if we were once able to find our way by an internal compass, it’s a skill we appear to have lost long ago.

The researchers were able to conduct their unique experiment by use of radio transmitters on the bats which were monitored from the ground and from a plane to verify the signals were correct. However, this kind of monitoring is limited to short distances, so the team is now in discussions with NASA and ESA about using satellites to help track smaller migratory birds and mammals.

The satellites currently used by scientists can only track larger sea birds over 300g, although 60 per cent of mammals and 80 per cent of birds are below this size. The technology exists to track this size of target, but no satellite has yet been launched.

Dr Holland believes tracking this size of bird or mammal is of key importance. “Birds and mammals carry and spread diseases, such as rabies or bird flu, and plotting their migration and movement can help us predict this spread. Large movements of birds can act as pests in themselves, but other species are scarce and need conservation support. We were only able to make our discovery through studying bats in the wild. But for many creatures, satellite tracking is the only way to study them in their natural habitat to help tackle these issues.”

Rebecca Walton | alfa
Further information:

Further reports about: Magnetic PLoS PuLSE TRACK orientation satellite

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>