Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal Magnetism Provides a Sense of Direction

27.02.2008
Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

They may not be on most people’s list of most attractive species, but bats definitely have animal magnetism. Researchers from the Universities of Leeds and Princeton have discovered that bats use a magnetic substance in their body called magnetite as an ‘internal compass’ to help them navigate.

Dr Richard Holland from Leeds' Faculty of Biological Sciences and Professor Martin Wikelski from Princeton University studied the directions in which different groups of Big Brown bats flew after they had been given different magnetic pulses and released 20km north of their home roost. The findings are published in the current issue of PLoS ONE.

Dr Holland was part of the team which, in 2006, discovered that bats used the Earth’s magnetic field to get around, but until now, how bats were able to sense the field was still unknown. Big Brown bats were put through a magnetic pulse 5000 times stronger than the Earth’s magnetic field, but orientated the opposite way(1).

... more about:
»Magnetic »PLoS »PuLSE »TRACK »orientation »satellite

Dr Holland said: “We had three groups of bats. One had undergone the magnetic pulse with a different orientation, and one control group had received no pulse at all. The third group had undergone the pulse, but in the same orientation as the Earth’s magnetic field. By including this group, we could easily see if changes in behaviour were the result of confusion caused by the pulse itself rather the impact of its orientation on the magnetite.”

The control group made their way home as normal, as did those which had undergone the pulse with the same orientation to the Earth’s magnetic field. But of those which had been through the pulse with a different orientation, half went home but half went in the opposite direction.

“This clearly showed that it is the magnetite in their cells which give bats their direction as we were able to change how the bats used it as an internal compass, turning their north into south,” says Dr Holland. “But as only half were affected, it’s likely there is another mechanism as well, which in some bats enabled them to override the impact of the pulse.”

Magnetite is found in the cells of many birds and mammals, including humans, but if we were once able to find our way by an internal compass, it’s a skill we appear to have lost long ago.

The researchers were able to conduct their unique experiment by use of radio transmitters on the bats which were monitored from the ground and from a plane to verify the signals were correct. However, this kind of monitoring is limited to short distances, so the team is now in discussions with NASA and ESA about using satellites to help track smaller migratory birds and mammals.

The satellites currently used by scientists can only track larger sea birds over 300g, although 60 per cent of mammals and 80 per cent of birds are below this size. The technology exists to track this size of target, but no satellite has yet been launched.

Dr Holland believes tracking this size of bird or mammal is of key importance. “Birds and mammals carry and spread diseases, such as rabies or bird flu, and plotting their migration and movement can help us predict this spread. Large movements of birds can act as pests in themselves, but other species are scarce and need conservation support. We were only able to make our discovery through studying bats in the wild. But for many creatures, satellite tracking is the only way to study them in their natural habitat to help tackle these issues.”

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001676

Further reports about: Magnetic PLoS PuLSE TRACK orientation satellite

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>