Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial 'battle for survival' leads to new antibiotic

26.02.2008
Holds promise for treating stomach ulcers

MIT biologists have provoked soil-dwelling bacteria into producing a new type of antibiotic by pitting them against another strain of bacteria in a battle for survival.

The antibiotic holds promise for treatment of Helicobacter pylori, which causes stomach ulcers in humans. Also, figuring out the still murky explanation for how the new antibiotic was produced could help scientists develop strategies for finding other new antibiotics.

The work is reported in the February issue of the Journal of the American Chemical Society.

... more about:
»Genome »MIT »Rhodococcus »Streptomyces »antibiotic »strain

A combination of luck, patience and good detective work contributed to the discovery of the new antibiotic, according to Philip Lessard, research scientist in Professor Anthony Sinskey's laboratory at MIT.

Sinskey's lab has been studying Rhodococcus, a type of soil-dwelling bacteria, for many years. While sequencing the genome of one Rhodococcus species, the researchers noticed that a large number of genes seemed to code for secondary metabolic products, which are compounds such as antibiotics, toxins and pigments.

However, Rhodococcus does not normally produce antibiotics. Many bacteria have genes for antibiotics that are only activated when the bacteria are threatened in some way, so the researchers suspected that might be true of Rhodococcus.

Kazuhiko Kurosawa, a postdoctoral associate in the Department of Biology, decided to try to provoke the bacteria into synthesizing antibiotics by placing them in stressful environments. He tried turning the temperature up and down, then altered the bacteria's growth medium, but nothing worked.

Kurosawa then decided to stress the Rhodococcus bacteria by forcing them to grow in the presence of a competing bacteria, a strain of Streptomyces. Streptomyces produces an antibiotic that normally kills other bacteria, but in one of the experimental test tubes, Rhodococcus started producing its own antibiotic, which wiped out the Streptomyces.

The researchers isolated the antibiotic, dubbed it rhodostreptomycin, and started testing it to see what else it would kill. It proved effective against many other strains of bacteria, most notably Helicobacter pylori. Rhodostreptomycin is a promising candidate to treat H. pylori because it can survive in very acidic environments such as the stomach.

The antibiotic turned out to be a type of molecule called an aminoglycoside, composed of peculiar sugars, one of which has a ring structure that has not been seen before. The ring structure could offer chemists a new target for modification, allowing them to synthesize antibiotics that are more effective and/or stable.

"Even if (rhodostreptomycin) is not the best antibiotic, it provides new structures to make chemical derivatives of," said Lessard. "This may be a starting point for new antibiotics."

One mystery still to be solved is why Rhodococcus started producing this antibiotic. One theory is that the presence of the competing strain of bacteria caused Rhodococcus to "raise the alarm" and turn on new genes.

The version of Rhodococcus that produces the antibiotic has a "megaplasmid," or large segment of extra DNA, that it received from Streptomyces. A logical conclusion is that the plasmid carries the gene for rhodostreptomycin, but the researchers have sequenced more than half of the plasmid and found no genes that correlate to the antibiotic.

Another theory is that the plasmid itself served as the "insult" that provoked Rhodococcus into producing the antibiotic. Alternatively, it is possible that some kind of interaction of the two bacterial genomes produced the new antibiotic.

"Somehow the genes in the megaplasmid combined with the genes in Rhodococcus and together they produced something that neither parent could make alone," said Lessard.

If scientists could figure out how that happens, they could start to manipulate bacterial genomes in a more methodical fashion to design new antibiotics.

Other authors of the paper are T.G. Sambandan, research scientist in MIT's Department of Biology, MIT professors Anthony Sinskey of biology and ChoKyun Rha of the Biomaterials Science and Engineering Laboratory, and Ion Ghiviriga and Joanna Barbara of the University of Florida.

The research was funded by the Cambridge-MIT Institute and the Malaysia-MIT Biotechnology Partnership Program.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Genome MIT Rhodococcus Streptomyces antibiotic strain

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>