Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High zinc status in lung cells slows growth and induces DNA damage-induced gene expression

26.02.2008
Researchers at the University of Maryland at College Park have discovered that Normal Human Bronchial Epithelial (NHBE) cells cultured in medium with elevated zinc level, at the high end of plasma zinc attainable by oral supplementation, demonstrated inhibition of cell growth, up-regulation of growth arrest and DNA damage-induced gene (Gadd45) mRNA and protein expression, and blockage of G2/M cell cycle progression.

The research, published in the March 08 issue of the Experimental Biology and Medicine, demonstrated that the essential nutrient zinc, at elevated physiologic level, is capable of inducing stress responsive genes in the NHBE cells. NHBE cells function as a protective airway barrier and are representative of the cell population during lung tissue transformation and are considered to be progenitor cells for human bronchial cancer.

Gadd45 is ubiquitously expressed in response to genotoxic agents, and is involved in many biological processes related to the maintenance of genomic stability and apoptosis. Over expression of Gadd45 was found to induce G2/M cell cycle arrest. The importance of Gadd45 in G2/M regulation was further supported by findings of the inability of cells from Gadd45 knockout mice to arrest at the G2/M phase after exposure to UV radiation. In addition, a functional association between stress-activated mitogen-activated protein kinase p38 pathway and Gadd45 in response to environmental stresses has been established in past studies. Moreover, the dependence of Gadd45 induction for the normal function of the tumor suppressor gene p53, which plays an important role in the maintenance of genomic fidelity by controlling cell cycle checkpoints and apoptotic processes following cell exposure to genotoxic stress, is well established. Furthermore, in response to DNA damage, Gadd45 was found to contribute to the stability of p53.

The research team, led by David K. Y. Lei, a professor of Nutrition, and Rita S. M. Shih, a recent doctoral graduate, designed the study to determine the influence of zinc status on Gadd45 expression and cell cycle progression in NHBE cells, and to decipher the molecular mechanism(s) exerted by the suppression of Gadd45 expression on cell growth and cell cycle progression in this normal human cell type.

... more about:
»DNA »G2/M »GADD45 »NHBE »Stress »blockage »p53 »zinc

“Inhibition of cell growth, up-regulation of Gadd45 mRNA and protein expression, and blockage of G2/M cell cycle progression were observed in NHBE cells cultured in high zinc medium - the zinc supplemented (ZS) cells ” said Lei. “ The siRNA-mediated knocking down of Gadd45 was found to relieve G2/M blockage in ZS cells, which indicated that the blockage was Gadd45 dependent. Moreover, the enhanced phosphorylation of p38 and p53 (ser15) observed in ZS cells was normalized after suppression of Gadd45 by siRNA, implicating that the enhanced phosphorylation of these proteins was Gadd45 dependent”. Thus, the researchers demonstrated for the first time that an elevated zinc status modulated the p53 and p38 signal transduction pathways to produce a delay at G2/M during cell cycle progression in NHBE cells.

Lei says “ the use of normal human cell types to evaluate the influence of nutrients and bioactive plant materials on the expression of stress responsive genes and cell cycle progression is a rapid and valuable approach to identify potential targets and provide mechanistic data. However, the applicability of these in vitro mechanistic data would require confirmation by detailed in vivo studies”

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said “This study on the molecular and cellular response of NHBE cells to a high zinc challenge may have important implications for conditions such as industrial exposure and extensive usage of zinc supplementation in animal production and in humans”. He further stated “The use of molecular and cellular approaches to address problems in nutritional sciences is the type of interdisciplinary study that the new Experimental Biology and Medicine is interested in publishing.”

David K.Y. Lei | EurekAlert!
Further information:
http://www.umd.edu
http://www.ebmonline.org

Further reports about: DNA G2/M GADD45 NHBE Stress blockage p53 zinc

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>