Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High zinc status in lung cells slows growth and induces DNA damage-induced gene expression

26.02.2008
Researchers at the University of Maryland at College Park have discovered that Normal Human Bronchial Epithelial (NHBE) cells cultured in medium with elevated zinc level, at the high end of plasma zinc attainable by oral supplementation, demonstrated inhibition of cell growth, up-regulation of growth arrest and DNA damage-induced gene (Gadd45) mRNA and protein expression, and blockage of G2/M cell cycle progression.

The research, published in the March 08 issue of the Experimental Biology and Medicine, demonstrated that the essential nutrient zinc, at elevated physiologic level, is capable of inducing stress responsive genes in the NHBE cells. NHBE cells function as a protective airway barrier and are representative of the cell population during lung tissue transformation and are considered to be progenitor cells for human bronchial cancer.

Gadd45 is ubiquitously expressed in response to genotoxic agents, and is involved in many biological processes related to the maintenance of genomic stability and apoptosis. Over expression of Gadd45 was found to induce G2/M cell cycle arrest. The importance of Gadd45 in G2/M regulation was further supported by findings of the inability of cells from Gadd45 knockout mice to arrest at the G2/M phase after exposure to UV radiation. In addition, a functional association between stress-activated mitogen-activated protein kinase p38 pathway and Gadd45 in response to environmental stresses has been established in past studies. Moreover, the dependence of Gadd45 induction for the normal function of the tumor suppressor gene p53, which plays an important role in the maintenance of genomic fidelity by controlling cell cycle checkpoints and apoptotic processes following cell exposure to genotoxic stress, is well established. Furthermore, in response to DNA damage, Gadd45 was found to contribute to the stability of p53.

The research team, led by David K. Y. Lei, a professor of Nutrition, and Rita S. M. Shih, a recent doctoral graduate, designed the study to determine the influence of zinc status on Gadd45 expression and cell cycle progression in NHBE cells, and to decipher the molecular mechanism(s) exerted by the suppression of Gadd45 expression on cell growth and cell cycle progression in this normal human cell type.

... more about:
»DNA »G2/M »GADD45 »NHBE »Stress »blockage »p53 »zinc

“Inhibition of cell growth, up-regulation of Gadd45 mRNA and protein expression, and blockage of G2/M cell cycle progression were observed in NHBE cells cultured in high zinc medium - the zinc supplemented (ZS) cells ” said Lei. “ The siRNA-mediated knocking down of Gadd45 was found to relieve G2/M blockage in ZS cells, which indicated that the blockage was Gadd45 dependent. Moreover, the enhanced phosphorylation of p38 and p53 (ser15) observed in ZS cells was normalized after suppression of Gadd45 by siRNA, implicating that the enhanced phosphorylation of these proteins was Gadd45 dependent”. Thus, the researchers demonstrated for the first time that an elevated zinc status modulated the p53 and p38 signal transduction pathways to produce a delay at G2/M during cell cycle progression in NHBE cells.

Lei says “ the use of normal human cell types to evaluate the influence of nutrients and bioactive plant materials on the expression of stress responsive genes and cell cycle progression is a rapid and valuable approach to identify potential targets and provide mechanistic data. However, the applicability of these in vitro mechanistic data would require confirmation by detailed in vivo studies”

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said “This study on the molecular and cellular response of NHBE cells to a high zinc challenge may have important implications for conditions such as industrial exposure and extensive usage of zinc supplementation in animal production and in humans”. He further stated “The use of molecular and cellular approaches to address problems in nutritional sciences is the type of interdisciplinary study that the new Experimental Biology and Medicine is interested in publishing.”

David K.Y. Lei | EurekAlert!
Further information:
http://www.umd.edu
http://www.ebmonline.org

Further reports about: DNA G2/M GADD45 NHBE Stress blockage p53 zinc

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>