Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein shines light on cancer response

A technique that specifically “tags” tumors responding to chemotherapy may offer a new strategy for determining a cancer treatment’s effectiveness within days of starting treatment, according to a new study by Vanderbilt-Ingram Cancer Center investigators.

Appearing online ahead of print in Nature Medicine, the researchers report the identification of a small protein that specifically recognizes tumors responding to chemotherapy. They show that the protein, when tagged with a light-emitting molecule, can be used to visualize cancer response in mice just two days after starting therapy.

Improved monitoring of tumor response could help customize patient treatment and also speed up the development of new cancer drugs, said senior investigator Dennis Hallahan, M.D., the Ingram Professor of Cancer Research and chair of Radiation Oncology at Vanderbilt University Medical Center.

Currently, response to chemotherapy is determined by measuring changes in tumor size with imaging techniques like CT (computed tomography) and MRI (magnetic resonance imaging).

“It takes two to three months of cancer therapy before we can determine whether the therapy has been effective for a patient,” he said. “If we can get that answer within one to two days, we can switch that patient to an alternative regimen very quickly.”

Rapid assessment of tumor response is especially important now, Hallahan says, given recent advances in molecular targeted therapies – chemotherapy medications that specifically interfere with the growth and proliferation of cancer cells while avoiding damage to healthy cells.

“We now have so many molecular targeted drugs to choose from, and that number is growing every year, so we are now at a point where a patient can be switched from one regimen to another,” he said. “But we need the tools to make the decision to use an alternative therapy with the patient.”

To find a rapid and noninvasive method to assess cancer response to these therapies, Hallahan focused not on tumor size, but molecular and cellular changes in responding tumors.

From a panel of billions of protein fragments, or peptides, Hallahan and colleagues identified one that specifically bound to tumors responding to therapy. To this peptide, they attached a light-emitting molecule and injected these labeled peptides into mice that had been implanted with human tumors.

Using specialized imaging cameras that detect light in the near-infrared range (invisible to the human eye), the investigators saw that tumors responding to therapy were “brighter” than non-responding tumors. The peptide detected response in a wide range of tumors – brain, lung, colon, prostate and breast – within two days of initiation of treatment.

“The key word here is ‘days,’” Hallahan said. “This will allow us to minimize the duration of treatments with ineffective regimens in cancer patients.”

The next step will be to move the technology into humans. The imaging technique used in mice (near-infrared) is not sensitive enough to penetrate deeply into human tissues, so the researchers are adapting the technology to an imaging modality commonly used in humans, called PET (positron emission tomography).

“This imaging peptide will enter clinical trials within about 18 months,” Hallahan said. “The purpose, when we bring it into people, is to ask a very simple question: can we image responding cancers in people as well as we can in mice?”

If so, he says that he suspects that such molecular imaging methods could help accelerate the development of new chemotherapeutic drugs.

“In the pharmaceutical industry, we’ll have a patient on a drug for months before we can re-evaluate the size of the tumor,” Hallahan said. “If we can get that answer within a couple of days, it will speed cancer drug development in the early phases of clinical trials.”

Craig Boerner | EurekAlert!
Further information:

Further reports about: Hallahan Investigator Peptide chemotherapy specifically therapy

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>