Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemical tool kit manipulates mitochondria, reveals insights into drug toxicity

26.02.2008
Why do nearly 1 million people taking cholesterol-lowering statins often experience muscle cramps? Why is it that in the rare case when a diabetic takes medication for intestinal worms, his glucose levels improve? Is there any scientific basis for the purported health effects of green tea?

A new chemical toolkit provides the first clinical explanation for these and other physiological mysteries. The answers, it turns out, all boil down to mitochondria, those tiny organelles floating around in cellular cytoplasm, often described as the cell’s battery packs.

A research team led by Harvard Medical School assistant professor and Broad Institute associate member Vamsi Mootha has developed a toolkit that isolates five primary aspects of mitochondrial function and analyzes how individual drugs affect each of these areas. These results are published online February 24 in Nature Biotechnology.

Over the last few decades, mitochondria have increasingly been understood as a key determinant of cellular health. On the other hand, mitochondrial dysfunction can lead to many neurodegenerative conditions as well as metabolic diseases such as diabetes. Since mitochondria are responsible for turning the food we eat into the energy that drives our bodies, these and other connections are logical. Nevertheless, there has not yet been a systematic method for thoroughly interrogating all facets of mitochondrial activity.

“Historically, most studies on mitochondria were done by isolating them from their normal environment,” says Mootha, who is also a member of the Center for Human Genetic Research at Massachusetts General Hospital. “We wanted to analyze mitochondria in the context of intact cells, which would then give us a picture of how mitochondria relate to their natural surroundings. To do this we created a screening compendium that could then be mined with computation.”

In order to thoroughly analyze these organelles, Mootha and his team zeroed in on five basic features of mitochondria activity, looking at how a library of 2,500 chemical compounds affected mitochondrial toxic byproducts (like all “chemical factories” mitochondria produce their own toxic waste), energy levels, speed with which substances pass through these organelles, membrane voltage, and expression of key mitochondrial and nuclear genes. (Mitochondria contain their own genome, consisting of approximately 37 genes in humans.)

“It’s just like taking your car in for an engine diagnostic,” explains Mootha. “The mechanic will probe the battery, the exhaust system, the fan belt, etc., and as a result will then produce a read-out for the entire system. That’s analogous to what we’ve done.”

As a result of these investigations, Mootha and his group produced three major findings.

First, the team discovered a pathway by which the mitochondria and the cell’s nuclear genome communicate with each other. They found this by discovering that certain drugs actually broke communication between these two genomes. By reverse engineering the drugs’ toxic effects, they may be able to reconstruct normal function.

Second, the team looked at a class of the cholesterol-lowering drugs called statins. Roughly 100 million Americans take statins, and among that group, about 1 million experience muscle cramping and aches. Previous studies suggested that mitochondria were involved, but clinical evidence remained conflicting. Mootha and his colleagues found that three out of the six statins (Fluvastatin, Lovastatin, and Simvastatin) interfered with mitochondria energy levels, as did the blood-pressure drug Propranolol. When combined, the effect was worse.

“It’s likely that a fair number of patients with heart disease are on one of these three statins as well as Propranolol,” says Mootha, “Our cellular studies predict that these patients might be at a higher risk for developing the muscle cramps. Obviously, this is only a hypothesis, but now this is easily testable.”

The third and arguably most clinically relevant finding builds on a paper Mootha coauthored in 2003, a paper that demonstrated how type 2 diabetes was linked to a decrease in the expression of mitochondrial genes. A subsequent and unrelated paper showed a relationship between type 2 diabetes and an increase in mitochondrial toxic byproducts. Mootha’s group decided to query their toolkit and see if there were any drugs that affected both of these functions, drugs that could boost gene expression while reducing mitochondrial waste.

Indeed, they found six compounds that did just that, five of which were known to perturb the cell’s cytoskeleton, that is, the scaffolding that gives a cell its structure.

“Our data shows that when we disrupt the cytoskeleton of the cell, that sends a message to boost the mitochondria, turning on gene expression and dropping the toxic byproducts,” says Mootha. “The connection between the cytoskeleton and mitochondrial gene expression has never been shown before and could be very important to basic cell biology.”

Of the five drugs that did this, one, called Deoxysappanone, is found in green tea and is known to have anti-diabetic effects. Another, called Mebendazole, is used for treating intestinal worm infections. This connection gives a rationale to case reports in which diabetics treated with Mebendazole have described improvements in their glucose levels while on the drug.

The researchers intend to further investigate some of the basic biological questions that this study has raised, foremost being the relationship between the cytoskeleton and mitochondria. They also plan on using this toolkit to develop strategies for restoring normal mitochondrial function in certain metabolic and neurodegenerative conditions where it has broken down.

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

Further reports about: Mootha TEA Toolkit cytoskeleton effect mitochondria mitochondrial statins toxic

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>