Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemical tool kit manipulates mitochondria, reveals insights into drug toxicity

26.02.2008
Why do nearly 1 million people taking cholesterol-lowering statins often experience muscle cramps? Why is it that in the rare case when a diabetic takes medication for intestinal worms, his glucose levels improve? Is there any scientific basis for the purported health effects of green tea?

A new chemical toolkit provides the first clinical explanation for these and other physiological mysteries. The answers, it turns out, all boil down to mitochondria, those tiny organelles floating around in cellular cytoplasm, often described as the cell’s battery packs.

A research team led by Harvard Medical School assistant professor and Broad Institute associate member Vamsi Mootha has developed a toolkit that isolates five primary aspects of mitochondrial function and analyzes how individual drugs affect each of these areas. These results are published online February 24 in Nature Biotechnology.

Over the last few decades, mitochondria have increasingly been understood as a key determinant of cellular health. On the other hand, mitochondrial dysfunction can lead to many neurodegenerative conditions as well as metabolic diseases such as diabetes. Since mitochondria are responsible for turning the food we eat into the energy that drives our bodies, these and other connections are logical. Nevertheless, there has not yet been a systematic method for thoroughly interrogating all facets of mitochondrial activity.

“Historically, most studies on mitochondria were done by isolating them from their normal environment,” says Mootha, who is also a member of the Center for Human Genetic Research at Massachusetts General Hospital. “We wanted to analyze mitochondria in the context of intact cells, which would then give us a picture of how mitochondria relate to their natural surroundings. To do this we created a screening compendium that could then be mined with computation.”

In order to thoroughly analyze these organelles, Mootha and his team zeroed in on five basic features of mitochondria activity, looking at how a library of 2,500 chemical compounds affected mitochondrial toxic byproducts (like all “chemical factories” mitochondria produce their own toxic waste), energy levels, speed with which substances pass through these organelles, membrane voltage, and expression of key mitochondrial and nuclear genes. (Mitochondria contain their own genome, consisting of approximately 37 genes in humans.)

“It’s just like taking your car in for an engine diagnostic,” explains Mootha. “The mechanic will probe the battery, the exhaust system, the fan belt, etc., and as a result will then produce a read-out for the entire system. That’s analogous to what we’ve done.”

As a result of these investigations, Mootha and his group produced three major findings.

First, the team discovered a pathway by which the mitochondria and the cell’s nuclear genome communicate with each other. They found this by discovering that certain drugs actually broke communication between these two genomes. By reverse engineering the drugs’ toxic effects, they may be able to reconstruct normal function.

Second, the team looked at a class of the cholesterol-lowering drugs called statins. Roughly 100 million Americans take statins, and among that group, about 1 million experience muscle cramping and aches. Previous studies suggested that mitochondria were involved, but clinical evidence remained conflicting. Mootha and his colleagues found that three out of the six statins (Fluvastatin, Lovastatin, and Simvastatin) interfered with mitochondria energy levels, as did the blood-pressure drug Propranolol. When combined, the effect was worse.

“It’s likely that a fair number of patients with heart disease are on one of these three statins as well as Propranolol,” says Mootha, “Our cellular studies predict that these patients might be at a higher risk for developing the muscle cramps. Obviously, this is only a hypothesis, but now this is easily testable.”

The third and arguably most clinically relevant finding builds on a paper Mootha coauthored in 2003, a paper that demonstrated how type 2 diabetes was linked to a decrease in the expression of mitochondrial genes. A subsequent and unrelated paper showed a relationship between type 2 diabetes and an increase in mitochondrial toxic byproducts. Mootha’s group decided to query their toolkit and see if there were any drugs that affected both of these functions, drugs that could boost gene expression while reducing mitochondrial waste.

Indeed, they found six compounds that did just that, five of which were known to perturb the cell’s cytoskeleton, that is, the scaffolding that gives a cell its structure.

“Our data shows that when we disrupt the cytoskeleton of the cell, that sends a message to boost the mitochondria, turning on gene expression and dropping the toxic byproducts,” says Mootha. “The connection between the cytoskeleton and mitochondrial gene expression has never been shown before and could be very important to basic cell biology.”

Of the five drugs that did this, one, called Deoxysappanone, is found in green tea and is known to have anti-diabetic effects. Another, called Mebendazole, is used for treating intestinal worm infections. This connection gives a rationale to case reports in which diabetics treated with Mebendazole have described improvements in their glucose levels while on the drug.

The researchers intend to further investigate some of the basic biological questions that this study has raised, foremost being the relationship between the cytoskeleton and mitochondria. They also plan on using this toolkit to develop strategies for restoring normal mitochondrial function in certain metabolic and neurodegenerative conditions where it has broken down.

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

Further reports about: Mootha TEA Toolkit cytoskeleton effect mitochondria mitochondrial statins toxic

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>