Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism Of Blood Clot Elasticity Revealed In High Definition

26.02.2008
Blood clots can save lives, staunching blood loss after injury, but they can also kill. Let loose in the bloodstream, a clot can cause a heart attack, stroke or pulmonary embolism.

A new study reveals in atomic detail how a blood protein that is a fundamental building block of blood clots gives them their life-enhancing, or life-endangering, properties.

The study, conducted by researchers at the University of Illinois and the Mayo College of Medicine, appears in the journal Structure.

Fibrinogen molecules form elastic fibers, the main material of blood clots. When a blood vessel is ruptured, signaling proteins in the blood convert fibrinogen into its active form, called fibrin. Fibrin molecules link together in a scaffold of fibers that seals the vesicle. Cells in the blood, such as red blood cells, fill the gaps.

... more about:
»Fibrinogen »Lim »Molecular »blood »clot »elastic »extension

Fibrinogen is highly elastic, able to reversibly stretch to two or three times its original length.

“Once they’re formed, blood clots have to be elastic because they have a mechanical function to withstand blood pressure,” said Klaus Schulten, holder of the Swanlund Chair in Physics at Illinois.

Understanding what gives fibrinogen its flexibility could help in the design of drugs to enhance their function, he said.

“We investigated what makes blood clots elastic,” said Eric Lee, a graduate research assistant and student in the M.D./Ph.D. program at Illinois. “How do we make them easier to break up or make them less likely to rupture?”

Bernard Lim, a cardiologist at Mayo and an expert on the science of blood clots, contacted Schulten’s group in 2006 for help with a puzzling finding. Lim had conducted a series of experiments using atomic force microscopy to measure the amount of force required to stretch individual fibrinogen molecules.

After dozens of trials, Lim had come up with a “force extension curve” that showed how the fibrinogen molecule behaved when it was stretched. His data indicated that the fibrinogen molecule elongates in a sequential fashion, with three distinct phases. But he could not tell which parts of the fibrinogen molecule were involved.

Fibrinogen is a symmetrical molecule, containing a central region connected to two end regions by long, interweaving coiled chains, called alpha helices. These “coiled coils” were believed to give the molecule its elasticity. But how?

The Illinois team used a computational approach to tackle the mystery. Using steered molecular dynamics (SMD), they modeled the behavior of every atom of the fibrinogen molecule as it was stretched. The computation involved more than a million atoms, and required six months to complete.

The resulting simulation ( see movie) generated a force extension curve that matched the one Lim had produced.

“This was an incredibly strong piece of evidence that what (Lim) saw wasn’t just in the eye of the beholder, but he saw really a property of the protein,” Schulten said.

The simulation also showed in molecular detail how the fibrinogen molecule responded to stretching. Each phase in the force extension curve corresponded directly with a distinct set of events in the elongation of the molecule.

“The simulations revealed that … the extension occurs in a specific and orderly pattern, with distinct regions within the coiled-coil unraveling before others,” the authors wrote.

Lim had also demonstrated that changes in calcium levels or in the pH (acidity) of a blood clot could alter fibrinogen elasticity, a finding that could influence the design of pharmaceutical agents.

“By understanding what happens at the molecular level, you can understand where to target drugs,” Lee said.

This study points to the efficacy of combining molecular dynamics simulations with experimental data on actual molecules, Schulten said. This is proving to be an effective way to get to the heart of molecular behavior, he said.

Simulations can test important, but potentially ambiguous, experimental findings, Schulten said. “And we can see (the behavior of the molecule) in chemical detail, in atomic detail. We see the full chemistry of this mechanical process.”

Schulten directs the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology.

Editor’s note: To reach Klaus Schulten, call 217-244-1604; e-mail: schulten@uiuc.edu.

Klaus Schulten | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Fibrinogen Lim Molecular blood clot elastic extension

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>