Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the mechanism of protein secretion

26.02.2008
Scientists from the Biozentrum, University of Basel, developed a successful screening method to identify protein interactions in the secretory pathway of living cells on a genome-wide scale. This discovery provides new insight into the mechanism of how proteins are secreted. Their research results are published in the current issue of the Journal of Cell Biology.

Mammalian cells secrete a plethora of different proteins such as antibodies, hormones and blood proteins that fulfill their biological function outside the cell. The process of protein secretion starts in the endoplasmic reticulum, a specialized cellular organelle where secretory proteins are synthesized, correctly folded, and sorted into transport vesicles. Efficient packaging of secretory proteins into transport vesicles requires the assistance of so called cargo receptors.

Beat Nyfeler and Hans-Peter Hauri addressed the mechanism of how secretory proteins enter transport vesicles by analyzing the mammalian cargo receptor ERGIC-53. ERGIC-53 is a transmembrane receptor that assists a subset of glycoproteins, including blood coagulation factors V and VIII, in efficient secretion.

To identify novel ERGIC-53 cargo proteins, the scientists developed a genome-wide screening approach based on the complementation of the yellow fluorescent protein (YFP) in living cells. By screening a human liver cDNA library, they identified a1-antitrypsin as previously unrecognized ERGIC-53 cargo protein. a1-antitrypsin is an important liver glycoprotein that is secreted into the blood where it acts as a serine protease inhibitor. Mutations in a1-antitrypsin can cause severe liver and lung diseases in humans.

In their follow up experiments, Nyfeler and Hauri found that the secretion of a1-antitrypsin is significantly delayed in ERGIC-53 knockdown and knockout cells. Interestingly, ERGIC-53 did not bind misfolded mutants of a1-antitrypsin that are known to cause liver and lung diseases in humans. This finding suggests that ERGIC-53 functions in protein quality control, ensuring that only correctly folded a1-antitrypsin is secreted by the liver cells. The novel YFP complementation assay has a promising potential for high-throughput screening of chemicals that can rescue conformational defects of a1-antitrypsin.

In this study Nyfeler and Hauri clearly identified ERGIC-53 as an intracellular cargo receptor of a1-antitrypsin and demonstrated the feasibility of YFP complementation-based cDNA library screening to identify novel protein complexes. Their work is the first successful screening method for the identification of protein complexes in the secretory pathway of living cells on a genome-wide scale.

Source article
Beat Nyfeler, Veronika Reiterer, Markus W. Wendeler, Eduard Stefan, Bin Zhang, Stephen W. Michnick, and Hans-Peter Hauri. Identification of ERGIC-53 as an intracellular transport receptor of a1-antitrypsin. Journal of Cell Biology (JCB), published 25th February 2008.

Alexandra Weber | alfa
Further information:
http://www.biozentrum.unibas.ch/bionews/Bionews_20080225B.html

Further reports about: Cargo ERGIC-53 Hauri Nyfeler Protein a1-antitrypsin mechanism receptor secretion secretory

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>