Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the mechanism of protein secretion

26.02.2008
Scientists from the Biozentrum, University of Basel, developed a successful screening method to identify protein interactions in the secretory pathway of living cells on a genome-wide scale. This discovery provides new insight into the mechanism of how proteins are secreted. Their research results are published in the current issue of the Journal of Cell Biology.

Mammalian cells secrete a plethora of different proteins such as antibodies, hormones and blood proteins that fulfill their biological function outside the cell. The process of protein secretion starts in the endoplasmic reticulum, a specialized cellular organelle where secretory proteins are synthesized, correctly folded, and sorted into transport vesicles. Efficient packaging of secretory proteins into transport vesicles requires the assistance of so called cargo receptors.

Beat Nyfeler and Hans-Peter Hauri addressed the mechanism of how secretory proteins enter transport vesicles by analyzing the mammalian cargo receptor ERGIC-53. ERGIC-53 is a transmembrane receptor that assists a subset of glycoproteins, including blood coagulation factors V and VIII, in efficient secretion.

To identify novel ERGIC-53 cargo proteins, the scientists developed a genome-wide screening approach based on the complementation of the yellow fluorescent protein (YFP) in living cells. By screening a human liver cDNA library, they identified a1-antitrypsin as previously unrecognized ERGIC-53 cargo protein. a1-antitrypsin is an important liver glycoprotein that is secreted into the blood where it acts as a serine protease inhibitor. Mutations in a1-antitrypsin can cause severe liver and lung diseases in humans.

In their follow up experiments, Nyfeler and Hauri found that the secretion of a1-antitrypsin is significantly delayed in ERGIC-53 knockdown and knockout cells. Interestingly, ERGIC-53 did not bind misfolded mutants of a1-antitrypsin that are known to cause liver and lung diseases in humans. This finding suggests that ERGIC-53 functions in protein quality control, ensuring that only correctly folded a1-antitrypsin is secreted by the liver cells. The novel YFP complementation assay has a promising potential for high-throughput screening of chemicals that can rescue conformational defects of a1-antitrypsin.

In this study Nyfeler and Hauri clearly identified ERGIC-53 as an intracellular cargo receptor of a1-antitrypsin and demonstrated the feasibility of YFP complementation-based cDNA library screening to identify novel protein complexes. Their work is the first successful screening method for the identification of protein complexes in the secretory pathway of living cells on a genome-wide scale.

Source article
Beat Nyfeler, Veronika Reiterer, Markus W. Wendeler, Eduard Stefan, Bin Zhang, Stephen W. Michnick, and Hans-Peter Hauri. Identification of ERGIC-53 as an intracellular transport receptor of a1-antitrypsin. Journal of Cell Biology (JCB), published 25th February 2008.

Alexandra Weber | alfa
Further information:
http://www.biozentrum.unibas.ch/bionews/Bionews_20080225B.html

Further reports about: Cargo ERGIC-53 Hauri Nyfeler Protein a1-antitrypsin mechanism receptor secretion secretory

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>