Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists discover new details of a gene-regulatory network governing metabolism

25.02.2008
NADP molecule regulates a cascade enabling yeast cells to adjust metabolic state

Metabolism is a central feature of life – a myriad of biochemical processes that, together, enable organisms to nourish and sustain themselves. Scientists at Cold Spring Harbor Laboratory (CSHL) are in the forefront of efforts to demonstrate how the regulation of genes governs fundamental life processes, including metabolism.

Such research, performed on simple model organisms like yeast cells, has implications for efforts to understand natural processes such as aging and disease states including cancer.

This week a team at CSHL led by Professor Leemor Joshua-Tor, Ph.D., announced a new and unexpected wrinkle in a story they previously thought they understood about how yeast cells, through the action of genes, adjust their metabolism in response to changes in their sources of food. The team’s findings were published February 22 in the journal Science.

... more about:
»CSHL »Joshua-Tor »Protein »Source »metabolism »sugar »yeast

Adapting to New Energy Sources

“S. cerevisiae, or common baker’s yeast, can use any number of different types of sugar molecules for energy production,” noted Dr. Joshua-Tor, a structural biologist. “Importantly, the yeast cell can rapidly respond to changes in its nutritional environment by altering the expression of specific genes that allow it to make use of those different energy sources.”

This much, notes Dr. Joshua-Tor and colleagues, has been understood for years. “The players involved in this process have been known for some time. But we did not understand precisely how the components of this particular biochemical pathway worked together,” said Stephen Johnston, a professor at the Biodesign Institute at Arizona State University and a co-author of the study.

It was Dr. Joshua-Tor’s team at CSHL that took the step of investigating the architecture of the proteins involved in the pathway, at the level of individual atoms. Using a technique called x-ray crystallography, they discovered a “player” in the molecular cast of characters whose involvement previously had been overlooked.

The unexpected molecule is called NADP. The team discovered that when a yeast cell changes from using glucose, a simple sugar, as a nutritional source to using galactose, a more complex sugar often found in dairy products and vegetables such as sugar beets, NADP is called into action. It “docks” to a protein called Gal80p, which acts along with a gene regulating-protein called Gal4p, to adapt the metabolism of the yeast cell so that it can make use of galactose.

“Importantly, changes in cellular levels of NAD, a close relative of NADP, had previously been linked to a gene circuit that controls aging and longevity in a large number of different organisms, including yeast but also including animals,” said Professor Rolf Sternglanz of Stony Brook University in New York, a co-author of the study.

Why The Regulatory Cascade Is Important

“It is becoming increasingly clear that the metabolic state of a cell is linked to the expression of its genes in a way that impacts biological processes of many kinds, ranging from cancer to aging,” said Dr. Joshua-Tor. The biochemical cascade identified by the team is part of a complex chain of events whose object is regulation of the output of specific genes.

Not only does the team’s work help explain how links in that gene-regulatory chain are constructed. “Gene-regulatory proteins impact every property of a cell and have long been recognized as possible targets for drugs,” said Dr. Joshua-Tor. “However, these types of proteins have proven resistant to the chemistry of modern drug design. A detailed understanding of how gene regulatory proteins are controlled may offer new and unanticipated opportunities to design drugs that would impact this class of proteins.”

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu
http://www.sciencemag.org/cgi/content/full/319/5866/1090

Further reports about: CSHL Joshua-Tor Protein Source metabolism sugar yeast

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>