Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune deficiency and balance disorder result from single gene defect

25.02.2008
Immune deficiency and balance disorder result from single gene defect

A genetic defect that causes a severe immune deficiency in humans may also produce balance disorders, according to a new study by researchers at the University of Iowa, The Jackson Laboratory and East Carolina University.

The study, published online Feb. 21 in the Journal of Clinical Investigation, examined a specialized strain of Jackson Laboratory mice with a mutation that eliminates the production a protein called p22phox. Disruption of this protein causes a form of chronic granulomatous disease (CGD) -- a severe immune deficiency -- in humans.

The researchers found that mice without p22phox develop an immune deficiency that mimics human CGD. They also discovered that the gene defect produces a severe balance disorder in the mice caused by loss of gravity-sensing crystals in the inner ear.

... more about:
»Balance »Banfi »CGD »Mutant »NOx »ROS »crystals »defect »deficiency »enzyme »gravity »immune »inner »p22phox

"The implication is that human patients with CGD caused by defects in this gene may also have balance disorders," said Botond Banfi, M.D., Ph.D., UI assistant professor of anatomy and cell biology and senior author of the study. "If that is the case, this would be the first patient population where we could study the consequences of losing the sensation of gravity.

"We hope that clinicians will test the balance capacity of those patients with this rare form of CGD" Banfi added. "Although it is hard to say what the consequences might be of not sensing gravity, these patients may be more prone to accidents like falling."

In addition to Banfi, the research team included Yoko Nakano, Ph.D., a UI postdoctoral fellow in Banfi's laboratory and lead author of the study; David Bergstrom, Ph.D., research scientist, and Chantal Longo-Guess, research assistant, both at The Jackson Laboratory; Sherri Jones, Ph.D., associate professor of communication sciences and disorders at East Carolina University; and William Nauseef, M.D., UI professor of internal medicine.

P22phox is emerging as a critical subunit of a family of enzymes that produce reactive oxygen species (ROS). For many years, ROS were simply thought of as destructive molecules that can kill infecting bacteria but also damage human cells. More recently, however, ROS have been shown to play an important role in many normal cell processes, including development and blood pressure regulation. The family of enzymes that produce ROS are called NADPH oxidases (Nox), and disruption of these enzymes has been implicated in a range of diseases, including cardiovascular and neurodegenerative diseases as well as immune deficiencies like CGD.

There are several forms of CGD caused by different genetic defects affecting the Nox complex of pathogen-fighting cells called phagocytes. CGD caused by lack of p22phox is one of the least common forms of the disease in humans. The mutant mouse, which was produced by The Jackson Laboratory's Neuromutagenesis Facility, represents the first animal model for this version of CGD and will be helpful in understanding the disease and developing potential treatments.

The study found that the mice without the p22phox protein were unable to produce ROS in phagocytes and were particularly susceptible to infection. For mice without the protein, infection with bacterial pneumonia was universally fatal. In contrast, normal mice had a 100 percent recovery rate from the same infection.

The mutant mice also had a severe balance disorder. Unlike normal mice that quickly learned how to walk on a rotating rod without falling off, the mutant mice always fell off within a few seconds. Additionally, the study showed that activity of nerve cells in the inner ear responsible for sending gravity signals to the brain was absent in the mutant mice.

"Loss of p22phox affects two enzyme complexes: one in phagocytes that is responsible for the immune defect, and one in the inner ear," Banfi said. "Since this is the first mouse model for defects in the p22phox subunit, this is the first time that its role in balance has been revealed."

Although inner ear cells looked normal in the mutant mice, the researchers discovered that otoconia -- tiny calcium carbonate crystals that are essential for sensing gravity -- do not form in the inner ears of these mice. Restoring the normal gene to the mutant mice rescued otoconial production and prevented the balance disorder. However, although the treatment did improve the mice's immune response, the partial restoration of gene expression was not sufficient to cure the immune deficiency completely.

"This may mean that gene therapy, which would only partially restore expression of p22phox, would not completely cure CGD in humans," cautioned Banfi. "We may have to look for alternatives and these mice will be ideal models to test new ideas for therapy."

The team was also able to track the location of the Nox complex during embryonic development of the inner ear by visualizing the location of p22phox. Interestingly, the complex does not reside in the same place that the otoconia form leading the researchers to propose a new mechanism by which the Nox complex controls production of the crystals.

"We speculate that superoxide radicals generated by the p22phox–containing complex facilitate the formation of otoconia by producing the right conditions, high pH and high calcium concentration, in the compartment where these calcium carbonate crystals form," Banfi explained.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Balance Banfi CGD Mutant NOx ROS crystals defect deficiency enzyme gravity immune inner p22phox

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>