Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another way to grow blood vessels

25.02.2008
Scientists find alternate pathway to angiogenesis

Researchers at Dana-Farber Cancer Institute have found a previously unknown molecular pathway in mice that spurs the growth of new blood vessels when body parts are jeopardized by poor circulation.

At present, their observation adds to the understanding of blood vessel formation. In the future, though, the researchers suggest it is possible that the pathway could be manipulated as a means of treating heart and blood vessel diseases and cancer. The paper appears in the Feb. 21 issue of the journal Nature.

Bruce Spiegelman, PhD, and his colleagues at Dana-Farber discovered that PGC-1alpha – a key metabolic regulatory molecule – senses a dangerously low level of oxygen and nutrients when circulation is cut off and then triggers the formation of new blood vessels to re-supply the oxygen-starved area – a process known as angiogenesis.

A similar response to hypoxia, or oxygen deprivation, has been observed before. The response is regulated by a group of proteins known as Hypoxia Inducible Factors (HIF) that detect hypoxia and activate the production of VEGF (vascular endothelial growth factor). VEGF, in turn, stimulates angiogenesis.

The newly discovered pathway provides “an independent way of getting there,” says Spiegelman, who is also a professor of cell biology at Harvard Medical School. Along with lead author Zoltan Arany, MD, PhD, and colleagues, Spiegelman found that HIF was completely left out of the loop when PGC-1alpha accomplished the same feat in single cells and in live mice using a different regulator, known as ERR-alpha (estrogen-related receptor-alpha).

When the scientists knocked out the activity of PGC-1 alpha (which was first identified in the Spiegelman lab) in cells and live mice, the hypoxia-induced response and angiogenesis were sharply decreased.

“We were surprised to find this novel mechanism,” comments Spiegelman.

“It was apparently there all along,” adds Arany. “That means there is now a second pathway that you need to know about if you are trying to activate or inhibit angiogenesis.”

Angiogenesis occurs in the normal development of the body, but it’s also an on-call service when an injury or an artery blockage – the cause of heart attacks and strokes – leaves normal tissues starved for blood. Generating a new network of small vessels to nourish the area can protect against further injury. Muscle-building exercise also triggers angiogenesis to provide circulation for the enlarging muscle tissue.

On the downside, cancer has evolved the ability to commandeer VEGF and other angiogenic factors to encourage blood vessel growth around tumors that have outgrown their oxygen supplies.

In recent years, companies have developed a number of drugs that manipulate the angiogenic pathway – in both directions. Among them are anti-angiogenic cancer drugs, including thalidomide and Avastin, which are designed to starve tumors by blocking the formation of blood vessels. Avastin is also used to dampen the abnormal growth of small vessels in the retina that causes macular degeneration in the eye.

Conversely, researchers have tried using VEGF and other compounds to improve the circulation in the legs and feet – and even heart muscle – of patients with poor blood supply.

“We’re still far from having good drugs to modulate angiogenesis through the HIF pathway,” commented Arany. The discovery of a second, alternate pathway, involving PGC-1 alpha and ERR-alpha, leading to angiogenesis may offer new opportunities for therapy “in any situation where angiogenesis is a factor,” he said.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.dana-farber.org

Further reports about: Angiogenesis Spiegelman VEGF blood vessel circulation

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>