Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another way to grow blood vessels

25.02.2008
Scientists find alternate pathway to angiogenesis

Researchers at Dana-Farber Cancer Institute have found a previously unknown molecular pathway in mice that spurs the growth of new blood vessels when body parts are jeopardized by poor circulation.

At present, their observation adds to the understanding of blood vessel formation. In the future, though, the researchers suggest it is possible that the pathway could be manipulated as a means of treating heart and blood vessel diseases and cancer. The paper appears in the Feb. 21 issue of the journal Nature.

Bruce Spiegelman, PhD, and his colleagues at Dana-Farber discovered that PGC-1alpha – a key metabolic regulatory molecule – senses a dangerously low level of oxygen and nutrients when circulation is cut off and then triggers the formation of new blood vessels to re-supply the oxygen-starved area – a process known as angiogenesis.

A similar response to hypoxia, or oxygen deprivation, has been observed before. The response is regulated by a group of proteins known as Hypoxia Inducible Factors (HIF) that detect hypoxia and activate the production of VEGF (vascular endothelial growth factor). VEGF, in turn, stimulates angiogenesis.

The newly discovered pathway provides “an independent way of getting there,” says Spiegelman, who is also a professor of cell biology at Harvard Medical School. Along with lead author Zoltan Arany, MD, PhD, and colleagues, Spiegelman found that HIF was completely left out of the loop when PGC-1alpha accomplished the same feat in single cells and in live mice using a different regulator, known as ERR-alpha (estrogen-related receptor-alpha).

When the scientists knocked out the activity of PGC-1 alpha (which was first identified in the Spiegelman lab) in cells and live mice, the hypoxia-induced response and angiogenesis were sharply decreased.

“We were surprised to find this novel mechanism,” comments Spiegelman.

“It was apparently there all along,” adds Arany. “That means there is now a second pathway that you need to know about if you are trying to activate or inhibit angiogenesis.”

Angiogenesis occurs in the normal development of the body, but it’s also an on-call service when an injury or an artery blockage – the cause of heart attacks and strokes – leaves normal tissues starved for blood. Generating a new network of small vessels to nourish the area can protect against further injury. Muscle-building exercise also triggers angiogenesis to provide circulation for the enlarging muscle tissue.

On the downside, cancer has evolved the ability to commandeer VEGF and other angiogenic factors to encourage blood vessel growth around tumors that have outgrown their oxygen supplies.

In recent years, companies have developed a number of drugs that manipulate the angiogenic pathway – in both directions. Among them are anti-angiogenic cancer drugs, including thalidomide and Avastin, which are designed to starve tumors by blocking the formation of blood vessels. Avastin is also used to dampen the abnormal growth of small vessels in the retina that causes macular degeneration in the eye.

Conversely, researchers have tried using VEGF and other compounds to improve the circulation in the legs and feet – and even heart muscle – of patients with poor blood supply.

“We’re still far from having good drugs to modulate angiogenesis through the HIF pathway,” commented Arany. The discovery of a second, alternate pathway, involving PGC-1 alpha and ERR-alpha, leading to angiogenesis may offer new opportunities for therapy “in any situation where angiogenesis is a factor,” he said.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.dana-farber.org

Further reports about: Angiogenesis Spiegelman VEGF blood vessel circulation

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>