Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering Research Tested in University Business Collaboration

22.02.2008
Pioneering research in the North East of England - which could help transform some of the world’s most commonly used products - is being put to the test in a collaboration between Northumbria University and Procter & Gamble.

Research by a team at Northumbria University’s School of Applied Sciences, led by computational chemist Dr Marcus Durrant, has developed a radical approach to the development of new catalysts - the vital components found in the manufacture of many of the world’s most commonly used products.

Major advances in software and computer technology over the past five years have enabled Durrant’s team to develop a new computerised approach for designing catalysts, which previously required labour intensive and costly experimental methods for their development.

Dr Durrant is recognised as a leading light in UK Computational Chemistry. His specialist interest is in biologically inspired computerised chemistry – bringing together evolutionary biology with computational chemistry, which uses quantum chemistry calculations. His radical new research was published in a European Chemistry Journal earlier this year.

... more about:
»Durrant »P&G »catalyst »experimental »identify

Dr Durrant says: “Catalysts are used right across industry and are essential in drug production and the production of plastics for example. However, speeding up the process and developing new catalysts has previously been a hit and miss and laborious task.

“Traditional catalyst development involves an experimental approach in which chemists must identify potential catalysts, prepare them by chemical synthesis and measure their catalytic properties experimentally. This method requires a significant amount of experimental knowledge, time and money in order to identify promising lead compounds.”

Now Dr Durrant and his team have joined forces with Procter & Gamble to trial their new approach on real industrial problems.

Using the new technique computer-generated programmes will do battle, ensuring the survival of the fittest catalysts. 2,000 days worth of computer time will be used to complete the project for P&G, with over 500 complex calculations, each taking up to five days to complete. This radical new approach is ideal for tackling problems where more traditional experimental chemistry has struggled to find the answers.

Dr. Mike Addison, Business Development Manager at P&G says: "We were delighted when Northumbria approached us with a very exciting research and development proposal to help us identify new catalysts for our products. Northumbria's approach to catalyst development is entirely computer-based and has the potential to identify particularly promising structures behind which to invest synthesis effort. If successful the approach offers a major advance in catalyst development.

“P&G is committed to serving the needs of the worlds’ consumers now and for generations to come. Catalysts are particularly important to achieving many of the transformations consumers need and want in a sustainable way, it is therefore entirely fitting for P&G to be involved in this cutting edge project.”

The partnership between Northumbria University and Procter & Gamble has been facilitated by Northumbria Commercial Enterprises, the University’s specialist division responsible for matching academic expertise with industrial need.

Graham Hopson, Commercialisation Manager at Northumbria Commercial Enterprises says: “We are delighted to have facilitated this important partnership between the University and P&G. We offer a range of services to business clients and this is a clear example of how ground breaking academic research can be used to potentially tackle real industrial problems.”

Katrina Alnikizil | alfa
Further information:
http://www.northumbria.ac.uk/news

Further reports about: Durrant P&G catalyst experimental identify

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>