Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering Research Tested in University Business Collaboration

22.02.2008
Pioneering research in the North East of England - which could help transform some of the world’s most commonly used products - is being put to the test in a collaboration between Northumbria University and Procter & Gamble.

Research by a team at Northumbria University’s School of Applied Sciences, led by computational chemist Dr Marcus Durrant, has developed a radical approach to the development of new catalysts - the vital components found in the manufacture of many of the world’s most commonly used products.

Major advances in software and computer technology over the past five years have enabled Durrant’s team to develop a new computerised approach for designing catalysts, which previously required labour intensive and costly experimental methods for their development.

Dr Durrant is recognised as a leading light in UK Computational Chemistry. His specialist interest is in biologically inspired computerised chemistry – bringing together evolutionary biology with computational chemistry, which uses quantum chemistry calculations. His radical new research was published in a European Chemistry Journal earlier this year.

... more about:
»Durrant »P&G »catalyst »experimental »identify

Dr Durrant says: “Catalysts are used right across industry and are essential in drug production and the production of plastics for example. However, speeding up the process and developing new catalysts has previously been a hit and miss and laborious task.

“Traditional catalyst development involves an experimental approach in which chemists must identify potential catalysts, prepare them by chemical synthesis and measure their catalytic properties experimentally. This method requires a significant amount of experimental knowledge, time and money in order to identify promising lead compounds.”

Now Dr Durrant and his team have joined forces with Procter & Gamble to trial their new approach on real industrial problems.

Using the new technique computer-generated programmes will do battle, ensuring the survival of the fittest catalysts. 2,000 days worth of computer time will be used to complete the project for P&G, with over 500 complex calculations, each taking up to five days to complete. This radical new approach is ideal for tackling problems where more traditional experimental chemistry has struggled to find the answers.

Dr. Mike Addison, Business Development Manager at P&G says: "We were delighted when Northumbria approached us with a very exciting research and development proposal to help us identify new catalysts for our products. Northumbria's approach to catalyst development is entirely computer-based and has the potential to identify particularly promising structures behind which to invest synthesis effort. If successful the approach offers a major advance in catalyst development.

“P&G is committed to serving the needs of the worlds’ consumers now and for generations to come. Catalysts are particularly important to achieving many of the transformations consumers need and want in a sustainable way, it is therefore entirely fitting for P&G to be involved in this cutting edge project.”

The partnership between Northumbria University and Procter & Gamble has been facilitated by Northumbria Commercial Enterprises, the University’s specialist division responsible for matching academic expertise with industrial need.

Graham Hopson, Commercialisation Manager at Northumbria Commercial Enterprises says: “We are delighted to have facilitated this important partnership between the University and P&G. We offer a range of services to business clients and this is a clear example of how ground breaking academic research can be used to potentially tackle real industrial problems.”

Katrina Alnikizil | alfa
Further information:
http://www.northumbria.ac.uk/news

Further reports about: Durrant P&G catalyst experimental identify

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>