Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pioneering Research Tested in University Business Collaboration

Pioneering research in the North East of England - which could help transform some of the world’s most commonly used products - is being put to the test in a collaboration between Northumbria University and Procter & Gamble.

Research by a team at Northumbria University’s School of Applied Sciences, led by computational chemist Dr Marcus Durrant, has developed a radical approach to the development of new catalysts - the vital components found in the manufacture of many of the world’s most commonly used products.

Major advances in software and computer technology over the past five years have enabled Durrant’s team to develop a new computerised approach for designing catalysts, which previously required labour intensive and costly experimental methods for their development.

Dr Durrant is recognised as a leading light in UK Computational Chemistry. His specialist interest is in biologically inspired computerised chemistry – bringing together evolutionary biology with computational chemistry, which uses quantum chemistry calculations. His radical new research was published in a European Chemistry Journal earlier this year.

... more about:
»Durrant »P&G »catalyst »experimental »identify

Dr Durrant says: “Catalysts are used right across industry and are essential in drug production and the production of plastics for example. However, speeding up the process and developing new catalysts has previously been a hit and miss and laborious task.

“Traditional catalyst development involves an experimental approach in which chemists must identify potential catalysts, prepare them by chemical synthesis and measure their catalytic properties experimentally. This method requires a significant amount of experimental knowledge, time and money in order to identify promising lead compounds.”

Now Dr Durrant and his team have joined forces with Procter & Gamble to trial their new approach on real industrial problems.

Using the new technique computer-generated programmes will do battle, ensuring the survival of the fittest catalysts. 2,000 days worth of computer time will be used to complete the project for P&G, with over 500 complex calculations, each taking up to five days to complete. This radical new approach is ideal for tackling problems where more traditional experimental chemistry has struggled to find the answers.

Dr. Mike Addison, Business Development Manager at P&G says: "We were delighted when Northumbria approached us with a very exciting research and development proposal to help us identify new catalysts for our products. Northumbria's approach to catalyst development is entirely computer-based and has the potential to identify particularly promising structures behind which to invest synthesis effort. If successful the approach offers a major advance in catalyst development.

“P&G is committed to serving the needs of the worlds’ consumers now and for generations to come. Catalysts are particularly important to achieving many of the transformations consumers need and want in a sustainable way, it is therefore entirely fitting for P&G to be involved in this cutting edge project.”

The partnership between Northumbria University and Procter & Gamble has been facilitated by Northumbria Commercial Enterprises, the University’s specialist division responsible for matching academic expertise with industrial need.

Graham Hopson, Commercialisation Manager at Northumbria Commercial Enterprises says: “We are delighted to have facilitated this important partnership between the University and P&G. We offer a range of services to business clients and this is a clear example of how ground breaking academic research can be used to potentially tackle real industrial problems.”

Katrina Alnikizil | alfa
Further information:

Further reports about: Durrant P&G catalyst experimental identify

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>