Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering Research Tested in University Business Collaboration

22.02.2008
Pioneering research in the North East of England - which could help transform some of the world’s most commonly used products - is being put to the test in a collaboration between Northumbria University and Procter & Gamble.

Research by a team at Northumbria University’s School of Applied Sciences, led by computational chemist Dr Marcus Durrant, has developed a radical approach to the development of new catalysts - the vital components found in the manufacture of many of the world’s most commonly used products.

Major advances in software and computer technology over the past five years have enabled Durrant’s team to develop a new computerised approach for designing catalysts, which previously required labour intensive and costly experimental methods for their development.

Dr Durrant is recognised as a leading light in UK Computational Chemistry. His specialist interest is in biologically inspired computerised chemistry – bringing together evolutionary biology with computational chemistry, which uses quantum chemistry calculations. His radical new research was published in a European Chemistry Journal earlier this year.

... more about:
»Durrant »P&G »catalyst »experimental »identify

Dr Durrant says: “Catalysts are used right across industry and are essential in drug production and the production of plastics for example. However, speeding up the process and developing new catalysts has previously been a hit and miss and laborious task.

“Traditional catalyst development involves an experimental approach in which chemists must identify potential catalysts, prepare them by chemical synthesis and measure their catalytic properties experimentally. This method requires a significant amount of experimental knowledge, time and money in order to identify promising lead compounds.”

Now Dr Durrant and his team have joined forces with Procter & Gamble to trial their new approach on real industrial problems.

Using the new technique computer-generated programmes will do battle, ensuring the survival of the fittest catalysts. 2,000 days worth of computer time will be used to complete the project for P&G, with over 500 complex calculations, each taking up to five days to complete. This radical new approach is ideal for tackling problems where more traditional experimental chemistry has struggled to find the answers.

Dr. Mike Addison, Business Development Manager at P&G says: "We were delighted when Northumbria approached us with a very exciting research and development proposal to help us identify new catalysts for our products. Northumbria's approach to catalyst development is entirely computer-based and has the potential to identify particularly promising structures behind which to invest synthesis effort. If successful the approach offers a major advance in catalyst development.

“P&G is committed to serving the needs of the worlds’ consumers now and for generations to come. Catalysts are particularly important to achieving many of the transformations consumers need and want in a sustainable way, it is therefore entirely fitting for P&G to be involved in this cutting edge project.”

The partnership between Northumbria University and Procter & Gamble has been facilitated by Northumbria Commercial Enterprises, the University’s specialist division responsible for matching academic expertise with industrial need.

Graham Hopson, Commercialisation Manager at Northumbria Commercial Enterprises says: “We are delighted to have facilitated this important partnership between the University and P&G. We offer a range of services to business clients and this is a clear example of how ground breaking academic research can be used to potentially tackle real industrial problems.”

Katrina Alnikizil | alfa
Further information:
http://www.northumbria.ac.uk/news

Further reports about: Durrant P&G catalyst experimental identify

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>