Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic pathway critical to disease, aging found

22.02.2008
The same chemical reaction that causes iron to rust plays a similarly corrosive role in our bodies. Oxidative stress chips away at healthy cells and is a process, scientists know, that contributes to a host of diseases and conditions in humans ranging from Alzheimer's, heart disease and stroke to cancer and the inexorable process of aging.

Now, writing in the current edition (Feb. 21, 2008) of the journal Nature, a team of University of Wisconsin-Madison scientists reports the discovery of a gene expression pathway that exerts a sweeping influence over the process of oxidative stress.

The finding is important because at its foundation it represents a master pressure point for a host of medical conditions, and could one day enable the manipulation of genes or the development of novel drugs to thwart disease.

"Most of the genes this pathway controls are important for human disease," according to Richard A. Anderson of the UW School of Medicine and Public Health and senior author of the new Nature report. "This is a totally new and novel pathway that controls the synthesis of enzymes key for many human diseases."

... more about:
»Aging »Disease »Genetic »Influence »Oxidative »RNA »Star-PAP »Stress »enzyme

Oxidative stress occurs when the body's ability to neutralize highly toxic chemicals known as free radicals is overtaxed. Free radicals can damage DNA and other molecules essential for the health of a cell.

A key enzyme in the new pathway, dubbed Star-PAP by its Wisconsin discoverers, functions as part of a complex that controls the expression of messenger RNA, all-important molecules that carry genetic information from the nucleus of a cell to the cytoplasm where proteins are made. Star-PAP is responsible for adding a critical biochemical tail onto messenger RNA. The tail, in kite-like fashion, is necessary for the stability of the messenger RNA molecules, can turn them on and off, and thus governs the production of certain key enzymes and proteins in the cell.

"The tail," Anderson explains, "is like a postage stamp that enables messenger RNA to exit the nucleus of the cell and enter the cytoplasm where the genetic message is translated into protein."

The Star-PAP enzyme regulates the production of a relatively small number of proteins and enzymes in cells, but those could have an influence far beyond oxidative stress, Anderson notes. However, the Wisconsin group found that the newfound pathway contains a genetic "on-off" switch for a key protein known as heme oxygenase-1, an agent that protects cells from oxidative stress.

"Star-PAP is a master switch that controls key aspects of oxidative stress in cells," says Anderson, a UW-Madison professor of pharmacology. "A wealth of the genes involved in oxidative stress also seems to be the direct targets for the Star-PAP pathway."

The discovery of a gene expression pathway and specific enzymes that exert broad influence on the process of oxidative stress has clear clinical relevance, Anderson says, because it could potentially be manipulated to mitigate the damage oxygen does to cells.

"Oxidative stress control pathways for us humans are pretty important because we live in an environment where oxygen is required to keep us alive, but also stresses us because of oxidative damage to our cells," Anderson says.

Oxidation can damage DNA, mitochondria, cell membranes, and other mechanisms and structures essential to the cell. Such damage underpins disease, including in the parts of the body -- the heart, the lungs and the brain -- that are heavy users of oxygen.

"We'll be able to get at this new machinery and, hopefully, manipulate it," says Marvin Wickens, a UW-Madison biochemist who was not involved in the study. New drugs that modulate the enzyme and control its activity could potentially blunt the stress that leads to disease.

Although the discovery of a new genetic pathway in cells is important, much work remains to identify how the pathway influences human disease, Anderson says.

"We've discovered a novel pathway that controls expression of genes important to oxidative stress," he says. "It has really key implications for heart disease, stroke, and possibly for aging, but it is still not clear precisely what functions this pathway is regulating in the context of those conditions."

Richard Anderson | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Aging Disease Genetic Influence Oxidative RNA Star-PAP Stress enzyme

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>