Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Masters of disguise: Secrets of nature's 'great pretenders' revealed

21.02.2008
A gene which helps a harmless African butterfly ward off predators by giving it wing patterns like those of toxic species, has been identified by scientists who publish their findings today (20 February 2008).

The mocker swallowtail butterfly, Papilio dardanus, is unusual because it emerges from its chrysalis with one of a large number of different possible wing patterns and colours. This is different from most butterfly species which are identified by a common wing pattern and colour. Furthermore, some of the different patterns that the mocker swallowtail exhibits mimic those of poisonous species, which affords this harmless insect a valuable disguise which scares off predators.

Biologists are interested in finding out exactly how wing pattern is determined in the mocker swallowtail, because they believe that understanding how these different mimic patterns evolved may shed new light on whether such evolutionary changes occur in small gradual steps, or sudden leaps.

In the 1950s scientists realised there must be a genetic 'switch' controlling which of the numerous possible wing patterns is expressed in each individual mocker swallowtail, but until now the location and identity of the genes involved have remained a mystery.

... more about:
»WING »disguise »mimic »mocker »species »swallowtail

The new study, published in Proceedings of the Royal Society B, shows how a team of biologists used molecular tags and DNA sequencing in order to pinpoint the part of its genetic code that determines wing pattern and colour. Their study suggests that a developmental gene called 'invected', which was already known to be involved in the early embryonic development of butterflies, is behind the allocation of different wing patterns in mocker swallowtails.

Professor Alfried Vogler of Imperial College London's Department of Life Sciences and the Natural History Museum, one of the authors on the paper, explains, however, that further investigation is needed to figure out exactly how this gene works.

"We've taken a big step here towards identifying exactly how this fascinating insect species is endowed with such a wide variety of extremely useful wing patterns. However, identifying the area of the genome involved in this process is just the first step - we now need to look in more detail at the differences in the invected gene, and another gene located next to it, to find out exactly how they produce the different forms," he said.

He goes on to emphasise the significance of studying the mocker swallowtail, saying: "You could argue that there would be little point in a species which slowly evolved to mimic a poisonous butterfly over the course of generations - the disguise is only useful if full and complete. This could suggest the possibility of sudden leaps in evolution occurring in this species, which would be an incredibly exciting discovery - by studying the changes in gene sequences we will find out if this happened or not."

The mocker swallowtail is found in sub-Saharan Africa and has a wingspan of between three-and-a-half, and four-and-a-quarter inches. Only females of the species exhibit the wing patterns that mimic other butterflies. All the males are yellow, with black markings and have the typical tails of most swallowtail butterflies.

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

Further reports about: WING disguise mimic mocker species swallowtail

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>