Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Masters of disguise: Secrets of nature's 'great pretenders' revealed

21.02.2008
A gene which helps a harmless African butterfly ward off predators by giving it wing patterns like those of toxic species, has been identified by scientists who publish their findings today (20 February 2008).

The mocker swallowtail butterfly, Papilio dardanus, is unusual because it emerges from its chrysalis with one of a large number of different possible wing patterns and colours. This is different from most butterfly species which are identified by a common wing pattern and colour. Furthermore, some of the different patterns that the mocker swallowtail exhibits mimic those of poisonous species, which affords this harmless insect a valuable disguise which scares off predators.

Biologists are interested in finding out exactly how wing pattern is determined in the mocker swallowtail, because they believe that understanding how these different mimic patterns evolved may shed new light on whether such evolutionary changes occur in small gradual steps, or sudden leaps.

In the 1950s scientists realised there must be a genetic 'switch' controlling which of the numerous possible wing patterns is expressed in each individual mocker swallowtail, but until now the location and identity of the genes involved have remained a mystery.

... more about:
»WING »disguise »mimic »mocker »species »swallowtail

The new study, published in Proceedings of the Royal Society B, shows how a team of biologists used molecular tags and DNA sequencing in order to pinpoint the part of its genetic code that determines wing pattern and colour. Their study suggests that a developmental gene called 'invected', which was already known to be involved in the early embryonic development of butterflies, is behind the allocation of different wing patterns in mocker swallowtails.

Professor Alfried Vogler of Imperial College London's Department of Life Sciences and the Natural History Museum, one of the authors on the paper, explains, however, that further investigation is needed to figure out exactly how this gene works.

"We've taken a big step here towards identifying exactly how this fascinating insect species is endowed with such a wide variety of extremely useful wing patterns. However, identifying the area of the genome involved in this process is just the first step - we now need to look in more detail at the differences in the invected gene, and another gene located next to it, to find out exactly how they produce the different forms," he said.

He goes on to emphasise the significance of studying the mocker swallowtail, saying: "You could argue that there would be little point in a species which slowly evolved to mimic a poisonous butterfly over the course of generations - the disguise is only useful if full and complete. This could suggest the possibility of sudden leaps in evolution occurring in this species, which would be an incredibly exciting discovery - by studying the changes in gene sequences we will find out if this happened or not."

The mocker swallowtail is found in sub-Saharan Africa and has a wingspan of between three-and-a-half, and four-and-a-quarter inches. Only females of the species exhibit the wing patterns that mimic other butterflies. All the males are yellow, with black markings and have the typical tails of most swallowtail butterflies.

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

Further reports about: WING disguise mimic mocker species swallowtail

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>