Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research uncovers the social dynamics of yellow jackets

20.02.2008
Colonies exhibit extreme cooperation and caste system

Michael Goodisman could be called the Maury Povich of the yellow jacket world. In his laboratory, Goodisman determines the paternity of yellow jackets to study family dynamics within a colony. Even though only one family lives within a colony, each yellow jacket queen mates with several males, creating a complex family tree.

“Social insects such as yellow jackets have been described as one of the greatest achievements of evolution because of the incredible cooperative nature of their societies,” said Goodisman, an assistant professor in the Georgia Institute of Technology’s School of Biology. “I wanted to know why the females would risk this cooperative nature by having multiple partners.”

Mating with multiple partners can also lead to disease and wasted time and energy, according to Goodisman. Plus, each new yellow jacket has siblings and half-siblings during the same breeding season, allowing for potential conflict and infighting between the subfamilies.

... more about:
»Cells »Goodisman »NEST »colony »cooperative »insect

“Weird things can start happening within families, so we looked to see if there was any evidence of this kind of selfish behavior within the colony,” explained Goodisman, whose projects are funded by the National Science Foundation (NSF).

Goodisman wondered if yellow jacket workers would kill new queens that had a different father or if they were more likely to turn their sister larvae into reproducing queens instead of sterile workers. Turning a worker into a queen is easier than it seems – it simply requires a comb nest with larger holes. The larger holes signal to the workers to feed the developing larvae different food, resulting in queens.

“You can actually take developing workers and if they’re young enough, put them into queen cells and they will develop into queens,” explained Goodisman.

Goodisman, graduate student Jennifer Kovacs and Eric Hoffman, formerly a postdoctoral researcher at Georgia Tech who is now an assistant professor at the University of Central Florida, tested the paternity of each insect to investigate whether any of the males in a colony fathered more queens than workers.

Similar to human paternity tests, comparing DNA sequences of two yellow jackets can show if one is related to another. Goodisman determined the genetic makeup of each of the queen’s male mates. He then determined what proportion of workers and new queens each male mate sired.

The results from the DNA fingerprinting showed that males fathered an equal number of queens and workers in a colony, allowing Goodisman to believe there is no conflict within a colony because of multiple mating.

“Instead of intense competition, yellow jackets seem to exhibit extreme cooperative and helping behaviors,” noted Goodisman. Results of this study were published in the journal Molecular Ecology.

Since Goodisman found no disadvantage to having mixed families in the colony, he believed there must be a benefit to the colony for each queen having multiple partners.

Goodisman, Hoffman and Kovacs compared the number of times a yellow jacket queen mated to how successful her colony was. Success was judged based on the number of worker and queen cells in the nest. The findings of this study were published in the journal Evolution.

No correlation was found between the number of mates and the number of worker cells. However, queens that effectively mated four or more times produced significantly more queen cells in the comb than queens that effectively mated fewer than four times. Colonies typically survive only one year, so the number of queens produced at the end of the season represents the entire reproductive output of the colony and, by extension, the original queen. Only inseminated queens survive the winter and emerge in the spring. Thus, Goodisman found that the benefit to multiple mating is that the queen’s colony is more successful.

Another avenue of Goodisman’s research is to investigate how yellow jacket development leads to a caste system with queens, males and workers – each with a different role in the colony. The queens mate with males to produce new queens and workers, but don’t require a male to produce new males. The female workers maintain and expand the colony, while the new queens and males just hang out and eat until it’s time to mate.

“The division of labor has made these animals so incredibly successful in cooperative behaviors, but workers and queens are genetically the same,” explained Goodisman.

Goodisman aimed to determine how these insects start with the same DNA but end up as such different insects. With help from Hoffman and graduate student Brendan Hunt, Goodisman learned that yellow jackets of the same developmental age express many genes in common regardless of their caste or gender. They also found that certain genes are turned on or off to create the different castes.

This study was published in the journal BMC Biology and Goodisman plans to continue this gene expression research in collaboration with Soojin Yi, also an assistant professor in Georgia Tech’s School of Biology.

“We’re going to use more sophisticated techniques to look at thousands of genes at once to really make big statements about how different queens are from workers and males,” said Goodisman.

Decision-making within a colony also intrigues Goodisman. Different events occur in the colony based on the time of year. For example, the queen constructs a nest and rears the first cohort of workers in the spring. Once the workers mature, they take over the task of colony maintenance and expand the nest by constructing a worker nest throughout the spring and summer. At the end of the summer, the colony begins to produce males and new reproductive queens.

“We want to know who’s telling the workers to stop making more workers and start making queens, so we’re studying the life cycle of yellow jacket colonies,” explained Goodisman. “Is it an environmental cue or possibly a cue from the queen"”

Even though some people think that yellow jackets are just a backyard nuisance, there are benefits to having yellow jackets around, contends Goodisman. They kill insects, suppress fly populations and eat roadkill, he says.

And he’s quick to point out, “Yellow jackets are not here for our pleasure. They’re reproducing, surviving and doing a great job at it.”

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: Cells Goodisman NEST colony cooperative insect

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>