Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH study identifies enzyme that protects against intestinal bacterial toxin

20.02.2008
Discovery may answer how feeding can prevent infection in critically ill patients

A persistent mystery in human medicine is how the lining of the small intestine, through which nutrients are absorbed, also prevents intestinal bacteria and their toxins from entering the bloodstream and causing serious infections.

A team of researchers from Massachusetts General Hospital (MGH) has found that a specific intestinal enzyme may be able to block the action of the bacterial toxin involved in the overwhelming infection known as sepsis. The findings, which will appear in the Proceedings of the National Academy of Sciences (PNAS), may also explain why patients recovering from serious injury are less likely to develop infections if they receive gastrointestinal nutrition.

“It’s been known for many years that people who don’t eat, particularly those who are ill or recovering from injury, are more susceptible to infections derived from the gut,” says Richard Hodin, MD, of the MGH Department of Surgery, the study’s senior author. “We know that eating – even small amounts of nutrients delivered through a feeding tube – can help prevent infections, and it may be that the production of this enzyme is the key to that protection. Everyone that takes care of critically ill patients knows the importance of ‘feeding the gut,’ but how that feeding works to prevent infection has been a mystery.”

... more about:
»IAP »LPS »MGH »Toxin »enzyme »intestinal »patients

Intestinal alkaline phosphatase (IAP) is produced by cells lining the small intestine, and several previous studies suggested that IAP might block the action of lipopolysaccharide (LPS), a molecule on the surface of many pathogenic bacteria that is responsible for their toxic effects. In order to investigate the normal function of IAP in the intestine – something that has not been understood – the MGH research team conducted a number of experiments with intestinal cell lines and confirmed that those cells’ expression of IAP could block the toxic effects of LPS.

A comparison of normal mice with mice in whom the IAP gene had been knocked out showed that the animals lacking IAP lost their protection against intestinal bacteria. The investigators also showed that IAP expression and the ability to detoxify LPS were decreased markedly when the animals did not eat for two days, a defect that was reversed when feeding resumed.

“Our results show that IAP produced in the intestinal lining and secreted into the gut can detoxify LPS and prevent bacteria from becoming harmful,” Hodin says. “In addition to explaining how feeding can protect ICU patients from infection, these findings may have significant implications for a variety of conditions, including inflammatory bowel disease. Studies are ongoing to determine the role that IAP may play in those disorders.” Hodin is a professor of Surgery at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

Further reports about: IAP LPS MGH Toxin enzyme intestinal patients

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>