Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methamphetamine drastically increases virus’ ability to replicate in brain tissue

05.06.2002


A controversial research study here has found that exposing cells infected with feline immunodeficiency virus - a surrogate for HIV - to methamphetamine increases those cells’ ability to replicate the deadly virus as much as 15-fold.



The finding, if confirmed by ongoing animal studies, could answer important questions about how lentiviruses such as FIV and HIV can gain a foothold in the brain. That knowledge is vital in slowing or lessening the dementia that often accompanies AIDS and similar diseases.

Ohio State University researchers reported this finding in a paper to be published in the next issue of the Journal of NeuroVirology.


The paper also reports that before a nerve cell can become infected with the virus, it must be associated with a specific type of lymphocyte, or immune cell. Lastly, the researchers discovered that once the virus infects the cells, it mutates into a form that no longer needs this immune-cell association to reproduce.

"We found that after about two weeks of chronic methamphetamine exposure, the ability of these infected cell lines to mass-produce virus increases dramatically," explained Michael Podell, a professor of veterinary clinical sciences and neurosciences.

The concentration of the drug the cells were exposed to was equal to an average level of methamphetamine in an adult abuser’s bloodstream, Podell said.

Like HIV, or human immunodeficiency virus, FIV belongs to a family of pathogens called lentiviruses. Lentivirus infections are particularly problematic since these viruses can escape detection by a healthy immune system, mutate quickly and lead to life-long infections in the host, Podell said.

FIV is one of the principal stand-ins for studies of HIV since the viruses are closely related. Studies of this kind using HIV cannot be done safely or ethically in humans.

Viruses spread within the body by first breaching the cell wall and taking up residence within the cellular environment. Once there, the virus begins replicating, or reproducing, until its numbers are so great the cell literally bursts, spreading the virus to nearby cells and throughout the bloodstream.

The Ohio State researchers focused on astrocytes, nerve cells that may make up as much as half of the brain but which for a long time were thought to play a minimal role. Recent research has shown that astrocytes are among the most important cells in the brain and may play a key role in immunity. While scientists had known that FIV and HIV could infect astrocytes, they believed the infection was merely a latent one with the virus remaining almost in dormancy.

Podell, along with colleagues Lawrence Mathes, professor of veterinary biosciences and director of OSU’s Center for Retroviral Research, and Mikhail A. Gavrilin, a research scientist in the Department of Veterinary Clinical Sciences, found that FIV is only able to infect astrocytes when they are associated with a peripheral blood mononuclear cell, or PBMC.

A receptor molecule on the astrocyte’s cell membrane allows the virus to enter the astrocyte, the researchers found. Both FIV and HIV are able to use the same receptor - CXCR4 - on astrocytes and on immune system cells. They believe CXCR4 may be the principal receptor for all lentiviruses on astrocytes.

The researchers noticed that once it had infected the astrocytes, the virus began to rapidly reproduce - an observation that was contrary to scientists’ belief that FIV resulted only in a latent infection. "We found that the reason the virus multiplies so rapidly is that it mutates into a different strain," Podell said, one that isn’t dependent on the presence of the other PBMC cells.

This virus strain - MD-A - appears to be completely independent of any immune system interaction. "That means that any drugs intended to interfere with, or influence the immune system may have absolutely no effect on the astrocyte infection in the brain," Podell said.

The experiments with methamphetamine exposure to the cells were surprising to the researchers.

"We found that if you treat these astrocyte cell lines with methamphetamine at the time that they are infected with FIV, and if you continuously expose them to the drug, you can see as much as a 15-fold increase in viral replication," Podell said.

"You can basically take this cell that normally has a limited ability to consistantly replicate virus and just dramatically turn it on, simply by adding methamphetamine."

The research team is now analyzing data obtained from as series of experiments that used cats as an animal model. If the findings are corroborated in the animals, Podell and his colleagues will try to unravel the precise mechanisms that are controlling FIV infection in these cells.

"The most difficult issue lies ahead, and that is understanding what mechanism is occurring and potentially discovering how to stop or block viral infection and replication in this environment," he said.

The project was supported by grants from the National Institute on Drug Abuse and the National Institutes of Health.

Earle Holland | EurekAlert

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>