Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-way cell talk provides clues about neuromuscular disease

19.02.2008
It’s a scientific given that neurons tell other cells what to do, but new evidence suggests that, like with any good relationship, these target cells also have much to contribute, scientists say.

In an animal model, Medical College of Georgia researchers have shown that if a muscle cell fails to produce the protein beta-catenin, its neuron doesn’t develop or function properly.

Their finding provides some of the first proof that in vertebrates such as man, this retrograde communication – from the target cell back to the neuron – is essential, says Dr. Lin Mei, corresponding author on research published online Feb. 17 in Nature Neuroscience.

“Previously, we thought signals flow mainly from neuron to muscle. This shows they can be produced from muscle,” says Dr. Mei, MCG’s chief of developmental neurobiology and Georgia Research Alliance Eminent Scholar in Neuroscience. “This is some of the first clear genetic evidence that when you disturb something in the muscle, you have a nerve problem.”

Dr. Mei’s research team knocked out beta-catenin in the muscle cells of a developing mouse. As a result, nerve terminals, which reach out to target cells, were misaligned. Release of neurotransmitters, which enable cell talk, from the tiny vesicles inside nerve terminals was impaired. Mice died prematurely. “Two-way communication is absolutely essential,” he says. Interestingly when the researchers knocked beta-catenin out of neurons instead, neurons developed and functioned normally.

“Theoretically the finding is very important in that it supports the retrograde hypothesis,” Dr. Mei says. “Practically it is also important because problems with motor neuron survival and differentiation cause many neuromuscular diseases, such as muscular dystrophy and ALS, where motor neurons need to survive,” noting that it’s unknown why neurons die in these diseases.

“We believe there is a retrograde signal downstream of beta-catenin or regulated by beta- catenin,” says Dr. Mei. “If you don’t have beta-catenin in the muscle, that signal may be missing and motor neurons are not happy.”

To find out what that signal is, his lab is comparing genetic expression in the beta-catenin knockout mouse to that of a normal mouse to see which genes are up- or down-regulated. “Those genes may be targeted by beta-catenin and may serve as this retrograde signal. If we can identify that, I can retire,” says Dr. Mei.

Beta-catenin is a protein with many roles, including helping cells stick together, and regulating gene expression in the Wnt pathway, which is essential for development. Dr. Mei’s previous work has shown that at least in a Petri dish, when a signaling component of the Wnt pathway, called disheveled, is disturbed in muscle cells, it causes problems with their co-cultured neurons.

In the early 1900s, German-born Scientist Viktor Hamburger provided some of the first evidence of the importance of retrograde communication in proper development of motor neurons: when he removed the budding limbs of chick embryos, motor neurons decreased in number.

“ … (T)he use of transgenic animals has established the importance of muscle ß-catenin in (neuromuscular junction) formation in vivo,” write Drs. Amy K.Y. Fu, Zelda Cheung and Nancy Y. Ip, of Hong Kong University of Science and Technology in an accompanying News and Views. “These findings also underscore the emerging role of Wnt signaling proteins in the regulation of synapse development. The identification of muscle ß-catenin-dependent signals for motoneurons may also contribute to our understanding of neuromuscular disorders, including muscular dystrophy and amyotrophic lateral sclerosis.”

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Beta-Catenin Disease Neuron neuromuscular retrograde

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>