Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building brains: mammalian-like neurogenesis in fruit flies

19.02.2008
A new way of generating brain cells has been uncovered in Drosophila. The findings, published this week in the online open access journal Neural Development, reveal that this novel mode of neurogenesis is very similar to that seen in mammalian brains, suggesting that key aspects of neural development could be shared by insects and mammals.

In the widely accepted model of neurogenesis in Drosophila, neuroblasts divide asymmetrically both to self renew and to produce a smaller progenitor cell. This cell then divides into two daughter cells, which receive cell fate determinants, causing them to exit the cell cycle and differentiate.

In mammals, neural stem cells may also divide asymmetrically but can then amplify the number of cells they produce through intermediate progenitors, which divide symmetrically. A research team from the University of Basel, Switzerland set out to study whether specific Drosophila neural stem cells, neuroblasts, might increase the number of cells generated in the larval brain via a similar mechanism.

The team used cell lineage tracing and genetic marker analysis to show that surprisingly large neuroblast lineages are present in the dorsomedial larval brain – a result, they say, of amplified neuroblast proliferation mediated through intermediate progenitors.

In the novel mechanism postulated by the researchers, there are intermediate progenitors present that divide symmetrically in terms of morphology, but asymmetrically in molecular terms. This latter feature means that cell fate determinants are segregated into only one daughter cell, leaving the other free to divide several more times, thus amplifying the number of cells generated.

The authors write: “The surprising similarities in the patterns of neural stem and intermediate progenitor cell division in Drosophila and mammals, suggest that amplification of brain neurogenesis in both groups of animals may rely on evolutionarily conserved cellular and molecular mechanisms.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com
http://www.neuraldevelopment.com/

Further reports about: Drosophila Neuroblast neural neurogenesis progenitor

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>