Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From stem cells to organs: The bioengineering challenge

18.02.2008
For more than a decade, Peter Zandstra has been working at the University of Toronto to rev up the production of stem cells and their descendants. The raw materials are adult blood stem cells and embryonic stem cells. The end products are blood and heart cells – lots of them. Enough mouse heart cells that they form beating tissue.

To do this, he has been applying engineering principles to stem cell research – work that has just earned him recognition by the American Association for the Advancement of Science (AAAS). The society will induct him as a Fellow during its Annual Conference, being held in Boston from February 14 to 18.

Starting with computer models of stem cell growth and differentiation (the process by which a stem cell matures into its final form), Zandstra has moved on to develop more sophisticated culture methods that fine-tune the microenvironments to guide the generation of the different cells types that make up the mature cells in our tissues: heart cells for the heart or blood cells for blood.

"If you describe something mathematically, you have a much better understanding of it than if you just observe it," he says. "And it's also a powerful way to test many different hypotheses in silico before going into the lab and doing the much more difficult experiments in vitro."

... more about:
»Heart »Stem »Zandstra

Dr. Zandstra, the Canada Research Chair in Stem Cell Bioengineering, also held a prestigious NSERC Steacie Fellowship. The Steacie prize - which goes to six select Canadian professors annually – allowed Zandstra to extend his work from mouse to man.

“There's only so much we can do with mouse cells,” notes Dr. Zandstra. “Now if we can also figure out how to get human embryonic stem cells to differentiate on command to generate functional adult-like cells, you can begin to think about the kinds of medical conditions you could treat with them.”

Doré Dunne | EurekAlert!
Further information:
http://www.nserc.ca

Further reports about: Heart Stem Zandstra

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>