Identical twins not as identical as believed

This surprising finding is presented by American, Swedish, and Dutch scientists in a study being published today in the prestigious journal American Journal of Human Genetics. The finding may be of great significance for research on hereditary diseases and for the development of new diagnostic methods.

How can it be that one identical twin might develop Parkinson’s disease, for instance, but not the other” Until now, the reasons have been sought in environmental factors. The current study complicates the picture.

“Even though the genome is virtually identical in identical twins, our results show that there in fact are tiny differences and that they are relatively common. This could have a major impact on our understanding of genetically determined disorders,” says Jan Dumanksi, who co-directed the international study with his colleague Carl Bruder.

“By uncovering these small genetic differences in identical twins where one of them is sick, we have a way of tying specific genetic changes to the genesis of common diseases,” says Carl Bruder.

These researchers studied 19 pairs of identical twins and found that they indeed had the same DNA but nevertheless evinced differences in the number of copies of individual DNA segments. A segment might be missing, or more copies might exist in one twin. This could explain how one identical twin can be afflicted with a disorder while the other twin remains fully healthy, according to the scientists.

Media Contact

Jan Dumanski EurekAlert!

More Information:

http://www.uu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors