Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mesothelin engineered on virus-like particles provides treatment clues for pancreatic cancer

18.02.2008
New understanding of a protein that spurs the growth of pancreatic cancer could lead to a new vaccine against the deadly disease, said researchers at Baylor College of Medicine in Houston in a report appearing in the current edition of the journal Molecular Cancer Therapeutics.

The protein called mesothelin appears to play an important role in promoting pancreatic cancer growth, said the senior author Dr. Qizhi (Cathy) Yao, professor of surgery – vascular surgery at BCM. She, along with co-lead authors Dr. Min Li, assistant professor of surgery, and research associate Dr. Uddalak Bharadwaj carried out the studies of the protein that is found on the tumor cells’ surface.

“Mesothelin is found in other cancers for several years,” said Yao, also a researcher in the Dan L. Duncan Cancer Center at BCM. “However, we didn’t know the role it played in pancreatic cancer:” until she and her colleagues reported in this article. In fact, they found very high levels of mesothelin in 18 of 21 samples of patient’s pancreatic tissues compared to amounts found in nearby normal tissues. In studies of this protein in the lab, pancreatic cancer cell lines that produced high levels of mesothelin grew faster and spread more than those in which mesothelin levels were lower.

Pancreatic cancer cells grew and spread faster in mice whose tumors expressed high levels of mesothelin than in those whose cancer did not, said the researchers, who conducted the studies in an immune deficient mouse.

... more about:
»Protein »Researcher »Yao »mesothelin »pancreatic »particles

“We saw this molecule as very significant in the life of the tumor cells,” Yao said. “Our next step is to identify whether this would be a good active immunotherapy target.”

Making a treatment vaccine of virus-like particles (VLPs) that contained mesothelin, researchers injected mice having pancreatic cancer with this vaccine three times. Virus-like particles have the unique property of inducing protective immune responses but they lack the infectious capacities of the original virus.

Tumor growth in the immunized mice slowed and in some cases the tumor disappeared. The average life span for the mice not treated was four weeks. The immunized mice survived five weeks longer than those not treated.

Researchers found that the immunization works by suppressing production of key immune system cells that suppress the body’s ability to fight the tumor. The researchers said pancreatic cancers produce these cells, called T regulatory cells, as a protective measure.

“If we are able to see the same results in humans, this would allow us to incorporate a combination therapy to treat the tumor,” Yao said. “Treatment with a single drug is not effective.”

Yao and her colleagues are seeking U.S. Food and Drug Administration approval to begin studies using their vaccination on people suffering from pancreatic cancer.

Graciela Gutierrez | EurekAlert!
Further information:
http://mct.aacrjournals.org/
http://www.bcm.edu

Further reports about: Protein Researcher Yao mesothelin pancreatic particles

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>