Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good housekeeping

18.02.2008
A protein with an important role in regulating gene expression may have other duties relating to chromosome maintenance

Most genetic information is directly encoded by the sequence of nucleotides in a chain of DNA, but further instructions may also be provided by adding chemical modifications to those nucleotides, just like inserting footnotes can alter the meaning of a text. One important modification is DNA methylation, which generally has the effect of ‘silencing’ transcriptional activity of marked genes—a secondary but essential level of regulation.

DNA methylation patterns can be transmitted from parent to child, an important process known as genomic ‘imprinting.’ Maintaining these patterns is an active process, as each cycle of DNA replication results in the production of chains that are only hemimethylated, and full methylation is subsequently restored by the enzyme DNA methyltransferase 1 (Dnmt1).

Other proteins are known to assist this process. Recent work from a group led by Haruhiko Koseki of the RIKEN Research Center for Allergy and Immunology in Yokohama, and Masaki Okano of the RIKEN Center for Developmental Biology in Kobe, has highlighted the important role of one particular protein, Np95, in directing Dnmt1 to hemimethylated DNA targets (1).

... more about:
»DNA »Dnmt1 »Np95 »methylation »modification

Koseki’s group initially found that Np95 associates with imprinting-related proteins, and subsequent experiments in mouse embryonic stem cells (ESCs) extended these findings, demonstrating that Np95 co-localizes with Dnmt1 and other associated proteins at hemimethylated chromosomal regions after DNA replication (Fig. 1). Eliminating the expression of Np95 altogether resulted in a marked reduction of DNA methylation in cultured ESCs, and led to full developmental arrest in mouse embryos.

Methylation does more than silence genes; it also helps stabilize DNA elements known as retrotransposons, which are otherwise capable of physically ‘jumping’ into other chromosomal regions—and potentially disrupting other genes. Koseki’s group found that Np95 helps to lock down these retrotransposons. “At the least, Np95 is essential to maintain genomic imprinting, which in turn permits normal development of embryonic and extraembryonic tissues,” he says. “But it could be possible that this process may also be important to ensure genomic stability.”

Intriguingly, Koseki’s and his colleagues also found evidence suggesting that Np95’s function may not be limited to restoring DNA methylation, but could encompass other chromosomal maintenance tasks as well—a possibility he is keen to investigate further. “Hemimethylated DNA is not simply a transient status that appears after DNA replication … it may potentially form a specific signal that could be sensed by Np95,” he says. “We presume that Np95 may form a platform that helps to organize not only DNA methylation but also other types of modifications.”

Reference

1. Sharif, J., Muto, M., Takebayashi, S., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/388/

Further reports about: DNA Dnmt1 Np95 methylation modification

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>