Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Does The World Appear Stable While Our Eyes Move?

15.02.2008
Whenever we shift our gaze, attention is directed to a new target. This shift in attention causes a brief compression of visual space, according to a study published February 15 in the open-access journal PLoS Computational Biology.

The team of researchers from the University of Münster, Germany, describes a model of brain function in which eye movement signals are used to boost the neural representation of objects located at the future eye position. This boost comes at the expense of a temporary loss of spatial accuracy. This research shows a direct correlation between visual perception and eye movement control.

Humans move their eyes 2-3 times a second without noticing. Each gaze shift triggers a host of internal brain processes with very delicate timing. The gaze shift is preceded by a brief shift of attention towards the new gaze target so that visual processing at the target area improves some 50 milliseconds before the eye itself looks at the target. This preceding improvement increases the sensitivity of visual neurons in many brain areas, which then respond more strongly to stimuli near the gaze target just prior to the gaze movement.

Using a detailed neuro-computational model of the representation of the visual world in cortical maps, the researchers investigated the consequences of these sensitivity changes to the perception of spatial location. Their results showed that objects presented just before the eye movement appear to lie at the gaze target rather than at their true spatial location, akin to a compression of visual space. Moreover, this model explains a peculiar finding that neurons in some brain areas appear to move their receptive field, i.e. the visual direction to which they respond, prior to eye movement. Analysis of the net effect of all receptive field changes in the model shows that the brain dynamically recruits cells for processing visual information around the target. This increase in processing capacity presumably allows one to perceive details of the object before looking at it, therefore making the world appear stable while we move our eyes.

... more about:
»Brain »Model »SHIFT »Visual »gaze »movement

This new model prompts many predictions that can guide experimental research – one step towards theory driven brain research. The model also paves the way to develop novel concepts for artificial vision systems.

fhamker@uni-muenster.de

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Brain Model SHIFT Visual gaze movement

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>