Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic breakthrough supercharges immunity to flu and other viruses

14.02.2008
McGill researchers discover way to boost cells' natural anti-virus defenses

Researchers at McGill University have discovered a way to boost an organism¡¯s natural anti-virus defences, effectively making its cells immune to influenza and other viruses.

The research was conducted by post-doctoral fellows Dr. Rodney Colina and Dr. Mauro Costa-Mattioli, working in collaboration with Dr. Nahum Sonenberg, a Howard Hughes Medical Institute International Scholar at McGill. They worked with colleagues at l'Institut de Recherches Cliniques de Montr¨¦al (IRCM) and the Ottawa Health Research Institute (OHRI). Their results are to be published February 13 in the journal Nature.

Their process ¨C which could lead to the development of new anti-viral therapies in humans ¨C involved knocking out two genes in mice that repress production of the protein interferon, the cell¡¯s first line of defence against viruses. Without these repressor genes, the mouse cells produced much higher levels of interferon, which effectively blocked viruses from reproducing. The researchers tested the process on influenza virus, encephalomyocarditis virus, vesicular stomatitis virus and Sindbis virus.

... more about:
»Interferon »Researchers »flu »genes

¡°People have been worried for years about potential new viral pandemics, such as avian influenzas,¡± Dr. Sonenberg said. ¡°If we might now have the means to develop a new therapy to fight flu, the potential is huge.¡±

Viruses are sub-microscopic infectious agents which can reproduce only by hijacking a cell¡¯s reproductive machinery, a process that usually leads to disease and even the death of the host organism. Interferon, in particular the type 1 interferons (IFN-¦Á and IFN-¦Â) suppress virus propagation. Production of type 1 interferon is controlled by the interferon regulatory protein 7 (Irf7), which researchers believe to be the ¡°master-regulator¡± of interferon production in the body. The McGill researchers found that protein synthesis of Irf7 is controlled by the repressor genes called 4E-BP1 and 4E-BP2.

¡°In a sense, it¡¯s quite a simple story,¡± Dr. Costa-Mattioli explained. ¡°When you get rid of the repressors, you have more of the key protein Irf7 present, which induces an anti-viral state in the cell. You¡¯re basically removing the brakes.¡±

The researchers detected no abnormalities or negative side-effects resulting from enhanced interferon production in the mice, Dr. Costa-Mattioli said. Dr. Sonenberg explained that the process of knocking out genes is not possible in humans, but the researchers are optimistic new pharmaceutical therapies will evolve from their research.

¡°If we are able to target 4E-BP1 and 4E-BP2 with drugs, we will have a molecule that can protect you from viral infection. That¡¯s a very exciting idea.¡± Dr. Costa-Mattiolo said. ¡°We don't have that yet, but it¡¯s the obvious next step.¡±

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

Further reports about: Interferon Researchers flu genes

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>