Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Approach May Render Disease-Causing Staph Harmless

14.02.2008
Researchers at the University of Illinois helped lead a collaborative effort to uncover a completely new treatment strategy for serious Staphylococcus aureus (“Staph”) infections. The research, published Feb. 14 in ScienceXpress, the online version of Science magazine, comes at a time when strains of antibiotic-resistant Staph (known as MRSA, for methicillin-resistant S. aureus) are spreading in epidemic proportions in hospital and community settings.

Among the deadliest of all disease-causing organisms, Staph is the leading cause of human infections in the skin, soft tissues, bones, joints and bloodstream, and drug-resistant Staph infections are a growing threat. By federal estimates, more than 94,000 people develop serious MRSA infections and about 19,000 people die from MRSA in the U.S. every year. MRSA is believed to cause more deaths in the U.S. than HIV/AIDS.

The multi-institutional team exploited a chemical pathway that allows the Staph bacterium to defend itself against an immune response. The researchers showed that a compound (BPH-652) originally designed to lower cholesterol blocks a key enzyme in that pathway, weakening the organism’s defenses and allowing the body’s immune cells to prevail against the infection.

A golden-colored pigment called a carotenoid gives the S. aureus bacterium its edge. “Aureus” is Latin for “golden.” The carotenoid acts as an antioxidant for the bacterium, allowing it to evade attack by the body’s immune cells. By crippling production of the carotenoid, the compound strips Staph of one of its key defenses.

The new research builds on a recent discovery by scientists at the University of California, San Diego. The UCSD team, led by Dr. Victor Nizet, a professor of pediatrics and pharmacy, showed that knocking out a gene for an enzyme in the chemical pathway that produced the Staph carotenoid reduced its virulence.
... more about:
»BPH-652 »Infection »MRSA »Staph »carotenoid »compound »enzyme »immune

When he read about this finding, University of Illinois chemistry professor Eric Oldfield realized that the chemical precursors of the Staph carotenoid were identical to those that led to production of cholesterol in humans. Oldfield, who is the senior author of the paper, had spent decades exploring this pathway, which has implications for the treatment of some cancers, as well as fungal and parasitic diseases. He noted that an enzyme in the human pathway, squalene synthase, was strikingly similar to one that led to the production of the carotenoid in Staph. He also knew that many compounds already had been developed to block the human enzyme.

“I thought there was a good chance that squalene synthase inhibitors developed early on as cholesterol lowering agents might also work on this other pathway,” he said. “Current cholesterol-lowering drugs like statins work in a completely different way and would be ineffective.”

The researchers began by testing dozens of new compounds for their activity against the Staph enzyme. This allowed them to narrow the field of potential candidates to eight. When they tested these drugs on Staph cells, they found that BPH-652 was the most effective at getting into the cells. A tiny dose impaired the cells’ ability to produce the carotenoid. The cells, once golden, turned white.

“We have found that the same golden armor used by Staph to thwart our immune system can also be its Achilles’ heel,” said Nizet, a study co-author, who is affiliated with the Skaggs School of Pharmacy and Pharmaceutical Sciences at UCSD.

Preliminary studies were conducted in the laboratories of Nizet and Dr. George Liu, a professor of pediatrics at Cedar-Sinai Medical Center. Exposure to BPH-652 also markedly reduced bacterial levels in a mouse model of severe Staph infection.

The key to the compound’s success is that the human and bacterial enzymes it targets are so similar. Andrew Wang and his colleagues at Academia Sinica and the National Taiwan University, both in Taipei, used X-ray crystallography to determine the structure of the enzyme and how it interacts with the inhibitors.

“Our structural studies pinpointed how these drug candidates bound to the bacterial enzyme to shut off pigment production,” Wang said.

The new findings are particularly promising because BPH-652 already has been used (as a cholesterol-lowering agent) in human clinical trials, reducing the cost and time for development.

“This research is an excellent example of how discoveries at the lab bench can lead to clinical advances,” said Dr. Elias A. Zerhouni, the director of the National Institutes of Health, which supported the research. “By following their scientific instinct about a basic biological process, the researchers found a promising new strategy that could help us control a very timely and medically important health concern.”

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: BPH-652 Infection MRSA Staph carotenoid compound enzyme immune

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>