Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon researchers discover a mechanism leading to cleft palate

14.02.2008
Work in zebrafish points to tiny gene products that regulate specific cell traffic of a key protein

By creating a genetic mutation in zebrafish, University of Oregon scientists say they've discovered a previously unknown mechanism for cleft palate, a common birth defect in humans that has challenged medical professionals for centuries.

Many molecular pathways in zebrafish are present in humans and other vertebrates. By studying the induced mutation in zebrafish, the 10-member research team isolated a disruption in early developmental signaling involving Pdgf, a platelet-derived growth-factor protein, and a microRNA known as Mirn140, the researchers write in a paper posted online in advance of regular publication the monthly journal Nature Genetics.

Mutant zebrafish lacking Pdgf had cleft palate similar to many human babies, showing that this growth factor helps to organize cells that make the palate. It came as a surprise that zebrafish into which the investigators had injected too much Mirn140 also had cleft palate.

... more about:
»MicroRNA »Mirn140 »PDGF »Pdgfra »cleft »cleft palate »palate

MicroRNAs are small gene products, found to be involved in gene expression, that were first described in 1993 by researchers at Harvard University. The term microRNA was introduced in when these single-strand RNA molecules about nucleotides in length were more fully detailed in Science in October 2001 by Gary Ruvkun of Massachusetts General Hospital in Boston.

Mirn140, when operating normally, allows for normal cell signaling by the Pdgfra protein that properly triggers cell migrations necessary for correct oral-cranial building. The researchers showed that Mirn140 blocks the cell’s expression of Pdgfra. Thus, cleft palate can result from too little Pdgfra that occurs because of either a mutation in the Pdgfra gene or too much Mirn140.

"We showed that this microRNA regulates the expression of the gene by controlling the migration of precursor cells to the palate-forming area," said principal investigator John H. Postlethwait, a professor of biology and member of the UO's Institute of Molecular Biology and Institute of Neuroscience. "This is a novel mechanism never before described."

A cleft palate is an opening in the roof of the mouth in which the two sides of the palate did not fuse, or join together, during a baby's early development. Cleft palate can negatively affect speech production, feeding, maxillofacial growth and dentition.

The first known attempt to correct the defect occurred in 500 A.D. The defect occurs with or without cleft lip (a separation of the two sides of the lip), on average, in 1 in 600 newborns, according to the Cleft Palate Foundation, but can vary by race. The highest incidence (3.6 per 1,000 births) occurs in American Indians. Palate formation begins after five weeks of gestation in humans and defects can become visible at 17 weeks, according to WebMD’s eMedicine.

The findings provide a new window into the mechanisms involved in cleft palate and craniofacial defects, but researchers caution that the findings don't point toward new clinical applications.

"Further exploration of how microRNAs and other factors modulate signaling pathways such as the Pdgf pathway during palatogenesis will assuredly continue to provide insights into the cause of, and possible treatments for, human craniofacial disease," the authors conclude.

Co-authors of the Nature Genetics paper with Postlethwait were: postdoctoral researcher Johann K. Eberhart; graduate students Xinjun He and Hao Song; research assistant Mary E. Swartz; research associate Yi-Lin Yan; undergraduate students Taylor C. Boling and Allison K. Kunerth; former graduate student Macie B. Walker; and Charles B. Kimmel, professor emeritus of biology. Eberhart and He were team leaders on the project, but all co-authors contributed equally.

The U.S. National Institutes of Health and U.S. National Center for Research Resources funded the research through grants to Postlethwait, Eberhart and Kimmel.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: MicroRNA Mirn140 PDGF Pdgfra cleft cleft palate palate

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>