Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon researchers discover a mechanism leading to cleft palate

14.02.2008
Work in zebrafish points to tiny gene products that regulate specific cell traffic of a key protein

By creating a genetic mutation in zebrafish, University of Oregon scientists say they've discovered a previously unknown mechanism for cleft palate, a common birth defect in humans that has challenged medical professionals for centuries.

Many molecular pathways in zebrafish are present in humans and other vertebrates. By studying the induced mutation in zebrafish, the 10-member research team isolated a disruption in early developmental signaling involving Pdgf, a platelet-derived growth-factor protein, and a microRNA known as Mirn140, the researchers write in a paper posted online in advance of regular publication the monthly journal Nature Genetics.

Mutant zebrafish lacking Pdgf had cleft palate similar to many human babies, showing that this growth factor helps to organize cells that make the palate. It came as a surprise that zebrafish into which the investigators had injected too much Mirn140 also had cleft palate.

... more about:
»MicroRNA »Mirn140 »PDGF »Pdgfra »cleft »cleft palate »palate

MicroRNAs are small gene products, found to be involved in gene expression, that were first described in 1993 by researchers at Harvard University. The term microRNA was introduced in when these single-strand RNA molecules about nucleotides in length were more fully detailed in Science in October 2001 by Gary Ruvkun of Massachusetts General Hospital in Boston.

Mirn140, when operating normally, allows for normal cell signaling by the Pdgfra protein that properly triggers cell migrations necessary for correct oral-cranial building. The researchers showed that Mirn140 blocks the cell’s expression of Pdgfra. Thus, cleft palate can result from too little Pdgfra that occurs because of either a mutation in the Pdgfra gene or too much Mirn140.

"We showed that this microRNA regulates the expression of the gene by controlling the migration of precursor cells to the palate-forming area," said principal investigator John H. Postlethwait, a professor of biology and member of the UO's Institute of Molecular Biology and Institute of Neuroscience. "This is a novel mechanism never before described."

A cleft palate is an opening in the roof of the mouth in which the two sides of the palate did not fuse, or join together, during a baby's early development. Cleft palate can negatively affect speech production, feeding, maxillofacial growth and dentition.

The first known attempt to correct the defect occurred in 500 A.D. The defect occurs with or without cleft lip (a separation of the two sides of the lip), on average, in 1 in 600 newborns, according to the Cleft Palate Foundation, but can vary by race. The highest incidence (3.6 per 1,000 births) occurs in American Indians. Palate formation begins after five weeks of gestation in humans and defects can become visible at 17 weeks, according to WebMD’s eMedicine.

The findings provide a new window into the mechanisms involved in cleft palate and craniofacial defects, but researchers caution that the findings don't point toward new clinical applications.

"Further exploration of how microRNAs and other factors modulate signaling pathways such as the Pdgf pathway during palatogenesis will assuredly continue to provide insights into the cause of, and possible treatments for, human craniofacial disease," the authors conclude.

Co-authors of the Nature Genetics paper with Postlethwait were: postdoctoral researcher Johann K. Eberhart; graduate students Xinjun He and Hao Song; research assistant Mary E. Swartz; research associate Yi-Lin Yan; undergraduate students Taylor C. Boling and Allison K. Kunerth; former graduate student Macie B. Walker; and Charles B. Kimmel, professor emeritus of biology. Eberhart and He were team leaders on the project, but all co-authors contributed equally.

The U.S. National Institutes of Health and U.S. National Center for Research Resources funded the research through grants to Postlethwait, Eberhart and Kimmel.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: MicroRNA Mirn140 PDGF Pdgfra cleft cleft palate palate

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>