Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells give clues to understanding cancer and make breakthrough in childhood leukaemia

13.02.2008
Scientists in Switzerland are uncovering new clues about how cancer cells grow - and how they can be killed - by studying stem cells, 'blank' cells that have the potential to develop into fully mature or 'differentiated' cells and other scientists in UK have made a breakthrough in understanding the cause of the most common form of childhood cancer, acute lymphoblastic leukaemia (ALL).

The research should lead to less aggressive treatment for the disease and could result in the development of new and more effective drugs, an international conference on stem cell biology was told last month.

The conference, organised by the European Science Foundation's EuroSTELLS programme and held in Barcelona on January 10-13, heard that stem cells and cancer cells share many similar features. For example the cellular machinery that sends signals between stem cells to tell them when and how to develop is in many cases similar to the signalling mechanisms that operate between cancer cells.

On one hand, Professor Ariel Ruiz i Altaba of the University of Geneva in Switzerland is studying key proteins in stem cells and cancer stem cells - cancer cells that are later responsible for tumour growth, the recurrence of tumours and the spread of the cancer to other parts of the body[1]. Four such proteins, called Sonic Hedgehog (Shh) and Gli-1, Gli-2 and Gli-3 act through a biochemical pathway to send important signals between cells. "We have shown that interfering with Shh signalling decreases the size of tumours, which is proof of principle that the tumours require the pathway," Professor Ruiz i Altaba told the conference participants.

... more about:
»Altaba »DNA »Esteller »Ruiz »Stem »leukaemia »stem cells »tumour

Professor Ruiz i Altaba's team has been experimenting with samples of brain and other tumours from patients, treating tumour cells and their cancer stem cells - the cells that continuously replenish the growing cancer - in the laboratory with chemicals that inhibit the activity of the Shh pathway and lead to the inhibition of Gli-1. "We take tumour samples and grow them in a variety of ways," said Professor Ruiz i Altaba. "When we treat them with inhibitors that block the Shh-Gli pathway, they all respond, demonstrating that every tumour we have tested requires this signalling pathway."

Professor Ruiz i Altaba added, "Hedgehog signalling appears to be involved in many kinds of stem cells and many kinds of cancers. Specifically, Gli-1 seems to be important for the proliferation of tumour cells and especially for the proliferation and perpetuation of cancer stem cells. We think the Gli code, the sum of all Gli activities, is locked in a 'hyperactivating' state in cancer, and if we can revert it to a repressive state, this could provide a possible therapeutic approach."

Meanwhile Dr Manel Esteller of the Spanish National Cancer Research Centre (CNIO) in Madrid has been investigating the way that genes in cancer cells and stem cells are modified by a process called methylation[2].

In a cell not all of the genes are active. Some are rendered 'silent' by the attachment of chemical entities called methyl groups. This is one of the mechanisms by which a cell can switch genes on and off. It has become clear that the pattern of DNA methylation is one key difference between a cell that has become specialised - that is differentiated - and one that remains undifferentiated.

"We have studied plant DNA and have seen that in undifferentiated tissue one particular region of the DNA is always unmethylated," Dr Esteller told the meeting. "In differentiated tissue this same region is methylated. If we take the undifferentiated cell and add the methylated gene we get differentiation."

A similar system appears to operate in human cells. And in some cancer cells there are particular patterns of DNA methylation. "We have seen that in some leukaemias there is a gene involved in differentiation that is methylated," Dr Esteller said. "In cultured cells we see that if we put the unmethylated gene back into the cell, we stop the growth of the cells in culture, and also in mouse models. This gene is acting as a tumour suppressor."

The hope is that further investigation of factors such as DNA methylation could lead to potential new treatments for cancer.

On the other hand, Professor Tariq Enver of the Weatherall Institute for Molecular Medicine at the University of Oxford presented findings of his research on acute lymphoblastic leukaemia (ALL), which has now been published in the journal Science[3].

Professor Enver, who is a EuroSTELLS collaborator and his co-workers, demonstrated for the first time the existence of cancer stem cells in ALL. The researchers compared the blood of three-year-old identical twins, one of whom has the disease while the other is healthy.

The researchers found that both twins had genetically abnormal blood cells - 'pre-leukaemic' stem cells that reside in the bone marrow. It appears that these cells can either lay dormant or can somehow be triggered to develop into full-blown leukaemia stem cells.

The researchers showed that these cells arise from an abnormal fusion of two genes during the mother's pregnancy. Professor Enver said, "This research means that we can now test whether the treatment of acute lymphoblastic leukaemia in children can be correlated with either the disappearance or persistence of the leukaemia stem cell. Our next goal is to target both the pre-leukaemic stem cell and the cancer stem cell itself with new or existing drugs to cure leukaemia while avoiding the debilitating and often harmful side effects of current treatments."

[1] Ruiz i Altaba A. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol, 2007, Sep; 17(9) 438-47.

[2] Esteller M. Epigenetic gene silencing in cancer: the hypermethylome. Hum Mol Gen, 2007, April;15 (16), 50-9.

[3] Hong D et al. Initiating and cancer-propagating cells in TEL-AML1-Associated Childhood Leukemia. Science, 2008, January, Vol. 319; no 5861, pp. 336-339.

Thomas Lau | alfa
Further information:
http://www.esf.org/eurostells

Further reports about: Altaba DNA Esteller Ruiz Stem leukaemia stem cells tumour

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>